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Abstract

This research develops a new Bayesian technique for the detection of scattering

primitives in synthetic aperture radar (SAR) phase history data received from a sensor

platform. The primary goal of this research is the estimation of size, position, and

orientation parameters defined by the “canonical” shape primitives of Jackson. Previous

Bayesian methods for this problem have focused on the traditional maximum a posteriori

(MAP) estimate based on the posterior density. A new concept, the probability mass

interval, is developed. In this technique the posterior density is partitioned into intervals,

which are then integrated to form a probability mass over that interval using the Gaussian

quadrature numerical integration techniques. The posterior density is therefore discretized

in such a way that the location of local peaks are preserved. A formal treatment is given to

the effect of locally integrating the posterior density in the context of parameter estimation.

It is shown that the operation of choosing the interval with the highest probability mass

is equivalent to an optimum Bayesian estimator that places zero cost on a “range” of

parameters. The range is user-controlled, and is akin to the idea of parameter resolution.

Additionally the peak-preserving property allows the user to begin with coarse intervals

and “zoom” in as they see fit. Associated with these estimates is a measure of quality

called the credible interval (or credible set). The credible interval (set) is a region of

parameter space where the “true” parameter is located with a user-defined probability.

Narrow credible intervals are associated with high-quality estimates while wide credible

intervals are associated with poor estimates. The techniques are implemented in state-of-

the-art graphics processor unit (GPU) hardware, which allows the numerical integration to

be performed in a reasonable time. A typical estimator requires several hundred million

computations and the GPU implementation reduces the computation time from several

hours to a few seconds. The mass interval estimation technique may be used on any

iv



Bayesian problem, but is demonstrated here using each of the canonical shape models of

Jackson. The technique successfully estimates parameters in different scenarios including

simple shapes, multiple shapes, incorrect shape (i.e. trying to estimate parameters using

the wrong model). The results of this research are a new exploration of the posterior

distributions of the canonical shape model, improved numerical integration strategies, and

a new statistical technique for the Bayesian estimation of parameters.
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BAYESIAN METHODS AND CONFIDENCE INTERVALS

FOR AUTOMATIC TARGET RECOGNITION OF SAR CANONICAL SHAPES

I. Introduction

Radar systems provide a means for high-fidelity sensing of a target scene from a

remote location. Depending on the choice of carrier frequency, a radar system can

provide sensing in environmental conditions that would inhibit optical sensing, such as

poor weather, nighttime observation, and (for very low carrier frequencies) beyond line-of-

site observations.

A single radar observation is inherently 1-dimensional, and range to target is the

simplest measurement. Synthetic aperture radar (SAR) is a more sophisticated technique

whereby the sensing platform (be it an aircraft, ship or vehicle) takes multiple individual

radar measurements of a stationary target as it moves along a path. If the path has sufficient

diversity, meaning each new observation adds more target information, the collection of

observations can be computer-processed to provide a 2-dimensional (or 3-dimensional)

measurement of the target scene. Alternatively, when the sensor is stationary and the

target moves, the process is known as inverse SAR or ISAR. When the measurements

are processed to estimate target reflectivity, the process is known as SAR imaging.

SAR imaging has proven to be an extremely successful tool. Modern SAR systems

occupy large bandwidths with high dynamic range. As a result, very high-resolution and

detailed images are available. This is a great improvement over early radars, but places

large demands on human analysts to detect interesting targets from the images. Often the

SAR images bear little resemblance to their optical counterparts and the analyst must be

very skilled to recognize interesting targets amongst other uninteresting ones.
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To this end, an open area of research is the problem of automatic target recognition

(ATR) whereby a computer recognizes known targets from the radar data. The problem of

accurately recognizing complex shapes is a very active research topic since the information

gained by a SAR platform is flight-path dependent and incomplete. The processing of

raw SAR data (the so-called phase history) into SAR images may provide data that is

most intuitive to the human analyst but forming such images is a computationally intensive

process and may be unnecessary for computer-assisted ATR detection.

One of the first problems to be solved for a successful ATR system is identifying

and recognizing characteristic features of the target. Jackson [1] developed a method of

predicting the received phase history of a series of standard shape types: plates, dihedrals

(right-angle bracket), spheres, trihedrals (corner brackets), top-hats (a right angle revolved

about an axis), and cylinders. These so-called ‘canonical’ shapes are shown in Figure 2.1.

Each shape has been parametrized by three classes of parameters: size parameters (length,

width, height, radius, etc.), pose parameters (roll, pitch, yaw) and position parameters (X,

Y, Z position). Size parameters vary by shape type.

1.1 Problem Description

Using the Jackson model, we are presented with the problem of extracting the shape

type and its parameters from a received phase history. When presented with a SAR phase

history, we wish to deliver to the ATR software a list of detected shapes, their types,

locations, sizes and orientation. The user must have the freedom to decide at what fidelity

they wish the detector to operate. The user must also be provided with some measure of

the confidence we have in those estimates. We wish to do this in the presence of additive

noise.
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1.2 Research Goals, Methodology, and Results

The goal of this research is twofold. First we will attempt to use Bayesian methods

to estimate parameters and shape types from an unknown phase history. Secondly, a

calculation of the credibility of that estimate will be performed. The result is a dataset

of grid points in parameter space that meets a specified confidence metric.

We approach these goals as follows. First, we develop a scheme to reduce the infinitely

dense posterior distribution into a discrete set of probability mass points. We show this

technique can be used at coarse, and then progressively finer, resolutions without loss of the

important notion of peak location. Secondly, we adapt well-known numerical methods to

the problem of integrating unknown functions (such as the posterior distribution function)

over finite bounds. We will show that this requires high computation power and describe

the adaptation of the Jackson [1] phase history model to low-cost modern GPU processors.

Finally a series of test cases will be applied to the algorithm to gauge performance.

The results of these tests show that the multi-zoom technique is effective at providing

fast, low precision estimates of the shape parameters, as well as high-precision estimates

over a much smaller interval. The technique is also effective for multiple shapes (provided

the number of shapes is known a priori). Discretizing the posterior density is also an

effective visualization technique and allows the analyst to explore degenerate cases (such

as the effects of using the wrong shape model in Section 4.4).

1.3 Thesis Organization

The thesis is organized as follows: Chapter 2 covers background material, including

the data model, basic definitions and commonly used methods and prior work on the topic.

Chapter 3 covers the new methods and techniques that were developed over the course

of this research. Chapter 4 describes the results of applying these new methods to a

series of representative simulations of real-world data, and also highlights the observations

uncovered that gain insight into the strengths and weaknesses of the techniques. Chapter 5

3



concludes the research and summarizes pertinent results as well as suggestions for future

topics of research.

Note: throughout this thesis the graphs and figures are annotated with a small

identifier starting with the phrase ‘guid’ followed by a number. This references a file that

has the original MATLAB source code used to generate that graph, which is available in

the AFIT archives for this thesis.
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II. Background

2.1 Canonical Shape Models

The canonical shape model used in this research follows the work of [1, 2]. The

model defines a bistatic, polarization-dependent prediction of the SAR phase history for

six standard shapes: plate, dihedral, trihedral, sphere, cylinder and top-hat. These are

shown in Figure 2.1.

(a) (b) (c)

(d) (e) (f)

Figure 2.1: Canonical shapes. (a) Plate (b) Dihedral (c) Trihedral (d) Cylinder (e) Top-hat

(f) Sphere. Used with permission from [1].
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The Jackson model for a single polarization factors the phase history into two parts:

a complex shape-, size- and pose-dependent magnitude1 factor M and a complex position-

dependent phase factor. This model is bistatic, and so it is dependent on positions of the

transmitter and receiver. Each shape has a series of different parameters which we will label

generically as Θ. The convention used here is to let the transmitter azimuth, elevation, and

range be labeled {θt, φt,Rt} and the corresponding receiver azimuth, elevation, and range

be labeled {θr, φr,Rr}. The resulting phase history as a function of wavenumber k = 2π f
c is

given by

S (k) = M(k, θt, φt, θr, φr,Θ)e− jk
(

Rt+Rr+ΔR(Θ)
)
. (2.1)

In this research we will utilize phase history vectors that are the result of sampling

Equation (2.1) along a series of K azimuth and elevation points

S(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
M(k, θt1 , φt1 , θr1, φr1,Θ)e− jk

(
Rt1+Rr1+ΔR1(Θ)

)
M(k, θt2 , φt2 , θr2, φr2,Θ)e− jk

(
Rt2+Rr2+ΔR2(Θ)

)
...

M(k, θtK , φtK , θrK , φrK ,Θ)e− jk
(

RtK+RrK+ΔRK (Θ)
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.2)

Several of the canonical shapes possess a phase center that does not coincide with its

geometric centroid. This artificial phase center creates a parameter and shape dependent

range offset ΔR(Θ). The phase centers for the cylinder, top-hat, and sphere are given in

Equations (2.11), (2.13), and (2.15). For cases without an artificial phase center, the true

range to the shape centroid (X, Y, Z) is given in [1] as

Rt + Rr ≈ X(cos φt cos θt + cos φr cos θr)

+ Y(sinφt cos θt + sinφr cos θr)

+ Z(sin θt + sin θr). (2.3)

1‘Magnitude’ is used loosely to differentiate this factor from the position phase factor. The magnitude
factor may be complex and non-positive.
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2.1.1 Coordinate System.

The Jackson phase history models [1] utilize a geometric transformation to describe

the orientation of a shape in terms of local angles θt (the elevation angle from transmitter

to shape), θr (elevation angle from receiver to shape), φt (azimuth angle from transmitter to

shape), and φr (azimuth angle from receiver to shape).

Throughout the simulations, we rely on a intuitive notion of the Euler angles roll,

pitch, and yaw. These are related to the local angles by use of the transformations given in

[1] (Sec 3.4.7) and in [3].

2.1.2 Plate.

The canonical plate shape is a phase history model for an infinitely thin rectangular

reflector. The basic shape parameters are its length L, height H and Radar Cross Section

(RCS) A along with the position X, Y, Z and roll-pitch-yaw pose angle. The complex

magnitude Mplate is given in [1] as

Mplate = A

(
jk√
π

)
sinc

(
k

L
2

(sinφt cos θt + sinφr cos θr)
)

× sinc
(
k

H
2

(sin θt + sin θr)
)

(2.4)

θt, θr, φt, φr ∈
[
−π

2
,
π

2

]
.

The phase center of the canonical plate coincides with its geometric center. The

corresponding range offset in Equation (2.1) is

ΔRplate = 0. (2.5)

2.1.3 Dihedral.

The canonical dihedral shape is a phase history model for an infinitely thin right-angle

reflector. The right angle is composed of two electrically connected flat plates of height

H joined on the length L axis. The basic shape parameters Θ are its length L, height H

and RCS A along with the position X, Y, Z and roll-pitch-yaw pose angle. The complex
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magnitude Mdihedral is given in [1] as

Mdihedral = A

(
jk√
π

)
sinc

(
k

L
2

(sinφt cos θt + sinφr cos θr)
)

× sinc (kH(cos θt − cos θr)) ×
{

cos θt+θr2 θt, θr ∈ [0, π4 ]
sin θt+θr2 θt, θr ∈ [π4 ,

π
2 ]

(2.6)

φt, φr ∈
[
−π

2
,
π

2

]
The phase center of the canonical dihedral coincides with its geometric center. The

corresponding range offset in Equation (2.1) is

ΔRdihedral = 0. (2.7)

2.1.4 Trihedral.

The canonical trihedral shape is a phase history model for an infinitely thin right-

corner reflector. The corner is composed of three electrically connected flat plates of height

H and width H (since these are the same, we refer to the shape as only having a ‘height’

parameter but not a ‘width’). The basic shape parametersΘ are its length height H and RCS

A along with the position X, Y, Z and roll-pitch-yaw pose angle. The complex magnitude

Mtrihedral is given in [1] as

Mtrihedral =
jk√
π

A sinc
[
kH(cos θt − cos θr)

]

×
⎧⎪⎪⎨⎪⎪⎩ sin

(
θt+θr

2 +
π
4 − tan−1 1√

2

)
, θr ∈

[
0, tan−1 1√

2

]
cos

(
θt+θr

2 +
π
4 − tan−1 1√

2

)
, θr ∈

[
tan−1 1√

2
, π2

] ⎫⎪⎪⎬⎪⎪⎭
× 1

2

[
sinc

[
kH
(
cos

(
φr − π4

)
cos θr − cos

(
φt − π4

)
cos θt

)]
+ sinc

[
kH
(
cos

(
φr +

π

4

)
cos θr − cos

(
φt +
π

4

)
cos θt

)]]
×
⎧⎪⎪⎨⎪⎪⎩ − cos

(
φt+φr

2 − π4
)
, φr ∈

[
−π4 , 0

]
sin

(
φt+φr

2 − π4
)
, φr ∈

[
0, π4

] ⎫⎪⎪⎬⎪⎪⎭ . (2.8)

The phase center of the canonical trihedral coincides with its geometric center. The

corresponding range offset in Equation (2.1) is

ΔRtrihedral = 0. (2.9)
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2.1.5 Cylinder.

The canonical cylinder shape is a phase history model for a cylindrical drum. The

basic shape parameters Θ are its length L, radius R, and RCS A along with the position

X, Y, Z and roll-pitch-yaw pose angle. The complex magnitude Mcylinder is given in [1] as

Mcylinder =

√
jk

cos φt
A cos φr sinc

[
k

L
2

(sinφt cos θt + sinφr cos θr)
]

(2.10)

θt, θr ∈
[
−π

2
,
π

2

]
.

The phase center of the canonical cylinder does not coincide with its geometric center

due to the curvature of the drum. The corresponding range offset in Equation (2.1) is

ΔRcylinder = R cos
(
θt − θr

2

) (
cosφt + cosφr

)
. (2.11)

2.1.6 Top-hat.

The canonical top-hat shape is a phase history model for a drum of radius R with

an infinitely thin large disk at the base. In the case of zero roll-pitch-yaw pose, this is

equivalent to the circular revolution of a right angle about the z axis. The height of the

drum is equal to the ‘brim’ of the top-hat, thus the revolved right angle is two plates of

equal length. Equivalently, the disk is of radius R + H. The basic shape parameters Θ are

its height H, radius R and RCS A along with the position X, Y, Z and roll-pitch-yaw pose

angle. The complex magnitude Mtophat is given in [1] as

Mtophat = A
√

jk [kH(cos θt − cos θr)]

⎧⎪⎪⎨⎪⎪⎩ sin
(
θt+θr

2

)
, θt, θr ∈ [0, π4 ]

cos
(
θt+θr

2

)
, θt, θr ∈ [π4 ,

π
2 ]
. (2.12)

The phase center of the canonical top-hat does not coincide with its geometric center

due to the curvature of the drum, similar to that of the cylinder. The corresponding range

offset in Equation (2.1) is

ΔRtophat = R cos
(
φt − φr

2

) (
cos θt + cos θr

)
. (2.13)
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2.1.7 Sphere.

The canonical sphere is a phase history model for a perfect ball shape. For a sphere

located at X = Y = Z = 0 the sphere looks the same from all angles. The basic shape

parameters Θ are its radius R and RCS A along with the position X, Y, Z and roll-pitch-yaw

pose angle. The complex magnitude Msphere is given in [1] as

Msphere = A
√
π. (2.14)

The phase center of the canonical sphere does not coincide with its geometric center

due to its curvature in two planes. The corresponding range offset in Equation (2.1) is

ΔRsphere = R

[
(cos θt + cos θr) cos

(
φt − φr

2

)
cos

(
θt + θr

2

)

+ (sin θt + sin θr) sin

(
θt + θr

2

)]
. (2.15)

2.2 Bayesian Parameter Estimation

The models in the previous section allow software to predict the phase history if the

parameters (X, Y, Z, roll, pitch, yaw, length, height, radius) are known. The goal of this

thesis is the opposite problem: to detect and estimate the parameters given only the phase

history. The Jackson model provides the basis for this effort.

Consider an ATR system whereby some prior knowledge of likely canonical shapes

is provided. This may be due to ‘favorite’ target shapes that the system is particularly

interested in, or key ‘signature’ shapes that may complete a composite target, or some

other reason. Incorporating this prior knowledge should improve detection results. In this

section, we review some common results from statistical estimation from an abstract point

of view. In Chapter 3, we will apply these results to the detection of canonical shapes.

Let the collection of all the parameters for a given shape be the D-dimensional vector

denotedΘ, and let a particular phase history (flattened into a vector) be denoted y. Consider

the estimation of a parameter Θ given an observation y. From basic probability theory, the
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relations hold for two events A and B (from [4], Ch. 3)

p(A, B) = p(A | B)p(B), (2.16)

p(A | B)p(B) = p(B |A)p(A), (2.17)

p(A) =
∫
R

p(A, B)dB. (2.18)

For an observation y and parameter Θ the conditional probability p(y |Θ) is called the

likelihood of y and represents the probability of a particular observation if the parameters

Θwere known exactly. A ‘best guess’ forΘ would be one that gives the highest probability

of p(y |Θ), and is known as the maximum likelihood estimate (MLE) [5]

ΘMLE = arg max
Θ

p(y |Θ). (2.19)

Now consider a situation where information on the probability of a particular

parameter value Θ occurring (regardless of any observation) is known ahead of time. The

prior distribution p(Θ) can be used with the likelihood by means of Equation (2.16) to

yield the famous Bayes’ Rule

p(Θ | y) =
p(y |Θ)p(Θ)

p(y)
. (2.20)

Often the likelihood function is known from the observed data, but the probability

of observation p(y) (the denominator of Equation (2.20)) is not. The denominator p(y) is

simply the marginalized joint density p(y,Θ). By Equation (2.18)) [6] and Bayes’ Rule

can be rewritten as

p(Θ | y) =
p(y |Θ)p(Θ)∫
RD p(y,Θ)dΘ

=
p(y |Θ)p(Θ)∫

RD p(y |Θ)p(Θ)dΘ
. (2.21)

The likelihood function p(y |Θ) views the observation y as a random variable, and

views the parameter vector Θ as an unknown constant. Bayes’ Rule in Equation (2.21)
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represents a method of converting a conditional estimate of the observed data y into a

conditional estimate of the parameters Θ [7]. This new conditional distribution p(Θ | y) is

the so-called posterior distribution. The posterior distribution views the parameter vector

Θ as the random variable, and the observation y as fixed.

The posterior distribution can provide a new definition of the ‘best guess’ of the

parameterΘ. The highest probability of the posterior is known as the maximum a posteriori

(MAP) estimate [8] (derived in Section 3.3.3 )

ΘMAP = arg max
Θ

p(Θ | y). (2.22)

Notice that in Equation (2.22), the calculation of ΘMAP need not depend on the

denominator of Bayes’ Rule. This is because the denominator of the simpler form of Bayes’

Rule in Equation (2.20) does not depend on the argumentΘ. However, as shown in Chapter

3, the calculation of the denominator will play an important role in estimators other than

the MAP estimation. In particular, the denominator is required when we wish to use the

posterior distribution p(Θ | y) itself instead of the parameter estimate ΘMAP.

The denominator of Equation (2.21) is, in general, difficult to calculate. It represents

the probability of the data y having ever been observed. Closed-form solutions for such

integrals often do not exist. For the ubiquitous case of detecting a signal in noise, the

likelihood p(y |Θ) is the Gaussian function. The denominator becomes an infinite integral

of a weighted Gaussian function. This type of integral has a closed-form solution only

for a small set of weight functions. We desire maximum flexibility in the weight function

(which becomes the prior distribution p(Θ)). As shown in the next section, the integral in

the denominator of Equation (2.21) can be approximated with good accuracy.
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2.3 Gaussian Quadrature

In the previous section we reviewed the use of Bayes’ Rule as a method for finding

the MAP estimate of a parameter Θ from observed data y. This involved calculating a

(typically difficult) integral in the denominator of Equation (2.21).

The Gaussian Quadrature is a numerical technique for solving weighted integrals.

There are many texts which describe techniques calculating the Gaussian Quadrature. We

follow the approach in [9] due to the author’s explanation of the rationale behind the use of

orthogonal polynomials rather than the calculation of rules themselves.

Consider the integral of the product of two functions f (x) and w(x) over a prescribed

(possibly infinite) range [a, b]

I f =

∫ b

a
f (x)w(x)dx. (2.23)

In this research, we consider f (x) to be the product p(y|Θ)p(Θ) and will primarily use

the unity weight function w(x) = 1 with [a, b] = [−1, 1]. However, in keeping with [9–11]

the general window w(x) is retained.

It is desirable to approximate the integral I f with a weighted set of samples of the

function f (x).

I f ≈
N∑

i=1

ci f (xi) (2.24)

The process of approximating an integral as a weighted sum of samples is known as a

quadrature [11]. The choice of the abscissa points {xi} and weights {ci} greatly influences

the accuracy of the quadrature estimate. It is important to realize that the choice of the {xi}
will not depend on the function f (x). In Gaussian quadrature (the type considered here)

the user does not specify {xi} at all, but merely the number of abscissas, N, that will meet a

specified error tolerance. We will derive the optimum set of points {xi} based solely on N.

In the description below the {xi} will be left free until the last step when the properties of

orthogonal polynomials will be used to define their location.
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2.3.1 Polynomial Interpolation.

The primary method of solving Equation (2.23) by quadrature is a two-step process.

First, the function f (x) is decomposed into a series of polynomials that approximate the

function and whose value is exact at the abscissas

f (x) ≈ pf (x) =
M−1∑
k=0

N∑
i=1

αk,ix
k (2.25)

pf (xi) = f (xi).

This process is known as interpolation. Next the linearity property of integration is

used to integrate each interpolating polynomial separately. If the interpolating polynomials

are chosen carefully, the integral of each interpolating polynomial becomes the coefficients

{ci} in Equation (2.24).

2.3.1.1 Laplace Interpolation.

It is assumed that the value of f (x) is known everywhere. It is desirable that the

polynomial approximation be exact at the abscissa points {xi}, although it may not be

exact between these points. One method of constructing the appropriate polynomial

approximation is by the Laplace interpolation ([9], pg. 20).

The Laplace interpolation constructs a set of polynomials {li(x)} that each has unity

value at the ith abscissa xi and has roots (zeros) at the other
{
x j�i

}
abscissas. Let π(x) be a

polynomial whose roots are each abscissa

π(x) =
N∏

i=1

(x − xi). (2.26)

A series of polynomials based on Equation (2.26) can be constructed. For each

polynomial in the series a single unique root is canceled

π†j(x) =
N∏

i=1
i� j

(x − xi) =
π(x)

(x − xj)
. (2.27)

The polynomials
{
π†j
}

have the requisite locations of roots, but each must be

normalized at the location of its ‘missing’ root. This normalized set of polynomials are
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the Laplace factors li(x) and are defined as

li(x) =
(x − x1)...(x − xi−1)(x − xi+1)...(x − xN)

(xi − x1)...(xi − xi−1)(xi − xi+1)...(xi − xN)

=

N∏
j=1
j�i

(x − xj)

(xi − x j)

=
π(x)

(x − xi)π
†
i (xi)
. (2.28)

Because each Laplace factor has unity value at its ‘own’ root, the interpolating

polynomial p f (x) is the weighted sum of the {li(x)},

f (x) ≈ pf (x) =
N∑

i=1

f (xi)li(x). (2.29)

To help clarify the above discussion, the development of the Laplace interpolation for

a function with five abscissas is shown in Figure 2.2. In Figure 2.2(a), the function π(x) is

composed of five roots at the circled locations. Figure 2.2(b) shows the development of the

five ‘missing root’ polynomials π†i (x). Notice that only one of the polynomials is nonzero

at each abscissa (as marked by the square). Finally, Figure 2.2(c) shows the Laplace factors

li(x). Note that each polynomial now has unity value at its corresponding abscissa (again

shown as squares).

At this point, the actual values of the abscissas are still unspecified. Soon it will be

shown that specifying the polynomial π(x) directly will lead to desirable results.

2.3.1.2 Error Term.

In order to calculate the interpolation error E(x) = f (x) − p f (x) we make use of the

Rolle Theorem ([9], pg 20) which states that for any continuous function f (x) with roots a

and b there exists a point a < ξ < b where its derivative f ′(ξ) = 0. Equivalently, for any

smooth function there is at least one local minimum or maximum between the zeros of the

function. Therefore for a function f (x) with a set of N roots {xi}, its derivative f ′(x) will

have N − 1 roots located inside min {xi} < x < max {xi}. Equivalently for the polynomial
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Figure 2.2: Laplace polynomial development: (a) Product of abscissas π(x), (b)

Polynomials π†i (x) created by removing 1 root each, and (c) Laplace factors li(x).

pf (x) in Equation (2.29), whose roots are the N abscissa points, there will be N − 1 points

where the derivative p′f (x) = 0.

Let the auxiliary function F(x) [9, 12, 13] be

F(x) = E(x) − Kπ(x)

= f (x) − pf (x) − Kπ(x), (2.30)

which has N roots from the term f (x) − p f (x). The factor K will be chosen to give an

additional zero at some new point x̂. The first derivative F ′(x) has N roots, the second

derivative F′′(x) has N − 1 roots and so on. The Nth derivative F (N)(x) has one root, ξ, and
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by Rolle’s Theorem it is on the interior of the abscissas {xi}. As a root, Equation (2.30)

becomes

F(ξ) = 0

= f (N)(ξ) − p(N)
f (ξ) − Kπ(N)(ξ). (2.31)

Note that the polynomial interpolation p f (x), being a linear combination of each li(x), is

of order N − 1, and so its Nth derivative is zero. The function π(x) is order N and monic

(leading coefficient is unity), therefore π(N)(ξ) = N!. Equation (2.31) becomes

f (N)(ξ) = KN!

K =
1

N!
f (N)(ξ). (2.32)

Recall that ξ is the point where F (N)(x) = 0. The error in the interpolation is

E(x) = f (x) − pf (x)

= F(ξ) + Kπ(x) (from Equation (2.30))

= Kπ(x)

=
1

N!
f (N)(ξ)π(x). (2.33)

Equation (2.32) shows that the interpolation error goes inverse-factorial with the number

of abscissas, and has a shape that follows a polynomial whose roots are the abscissa points

{xi}. The worst-case error can be conservatively estimated to be of amplitude

Emax =
π(x)
N!

(
max

∣∣∣ f (N)(ξ)
∣∣∣) over the range [min {xi} ,max {xi}]. (2.34)

Note that for any polynomial function fM(x) of order M < N − 1, the derivative term

f (N)
M (ξ) = 0, and therefore the polynomial interpolation p f (x) has zero error inside the

abscissas.
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2.3.2 Hermite Interpolation.

The Laplace interpolation, Equation (2.29), is exact for polynomials up to order N−1.

Following ([9], sec 2.6), the Hermite interpolation further extends the Laplace interpolation

by requiring the interpolating polynomial p f (x) and its first derivative to be exact at the

abscissas. The Hermite interpolation defines two new polynomials hi(x) and hi(x) to

interpolate the function f (x) and its derivative f ′(x). This is an improvement over Laplace

interpolation since the added constraints on the derivative allow us to specify a higher order

interpolating polynomial p f (x) with the same number of abscissas. Under these conditions,

a new interpolating polynomial p f (x) is defined as

pf (x) =
N∑

i=1

hi(x) f (xi) +
N∑

i=1

hi(x) f ′(xi). (2.35)

It follows that the derivative of Equation (2.35) is

p′f (x) =
d

dx

⎛⎜⎜⎜⎜⎜⎝ N∑
i=1

hi(x) f (xi)

⎞⎟⎟⎟⎟⎟⎠ + d
dx

⎛⎜⎜⎜⎜⎜⎝ N∑
i=1

hi(x) f ′(xi)

⎞⎟⎟⎟⎟⎟⎠
=

N∑
i=1

d
dx

(
hi(x) f (xi)

)
+

N∑
i=1

d
dx

(
hi(x) f ′(xi)

)

=

N∑
i=1

(
h′i(x) f (xi) + hi(x) f ′(xi)

)
+

N∑
i=1

(
hi
′
(x) f ′(xi) + hi(x) f ′′(xi)

)
. (2.36)

Exact reconstruction at the abscissas requires the values of hi(x) be unity at the ith

abscissa and zero at the other abscissas while its derivative should be zero at all abscissas.

Similarly, the derivative of the polynomial hi(x) should be unity at the ith abscissa and zero

at the other abscissas while the value of hi(x) should be zero at all abscissas. It is convenient

to make use of the Kronecker delta δi j and so the conditions can be restated as

hi(x j) = δi j hi(xi) = 0
h′i(xi) = 0 hi

′
(x j) = δi j.

(2.37)

The conditions in Equation (2.37) force the value of pf (x) and its derivative to be

pf (xi) = f (xi) (2.38)

p′f (xi) = 2 f ′(xi). (2.39)
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For N abscissa, the conditions on values and derivatives in Equation (2.37) are

sufficient to define the coefficients of a polynomial p f (x) of order 2N − 1. The Laplace

factor defined in Equation (2.28) is used as a template for hi(x) and hi(x). Squaring the

Laplace factor li(x) yields a polynomial of order 2(N−1). By applying leading factors ri(x)

and si(x) to [li(x)]2, two unique polynomials of order 2N − 1 are created. In order to satisfy

Equation (2.37), [9] suggests the following values for ri(x) and si(x),

hi(x) = ri(x)[li(x)]2,

= [1 − 2l′i(xi)(x − xi)][li(x)]2, (2.40)

hi(x) = si(x)[li(x)]2,

= (x − xi)[li(x)]2. (2.41)

The subsequent error term is derived similarly to Equation (2.32) and is given in [9]

as

E(x) = f (x) − pf (x)

=
f (2N)(ξ)
(2N)!

[π(x)]2. (2.42)

Note that for any function f (x) that is a polynomial of order 2N −1 or lower, f (2N) = 0

and therefore the interpolation error is zero (exact reconstruction).
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2.3.3 Integration and Integration Error.

To solve for the integral Equation (2.23), integrate the terms in Equation (2.35).

I f =

∫ b

a
f (x)w(x)dx ≈ Ipf

Ip f =

∫ b

a

⎛⎜⎜⎜⎜⎜⎝ N∑
i=1

hi(x) f (xi) +
N∑

i=1

hi(x) f ′(xi)

⎞⎟⎟⎟⎟⎟⎠w(x)dx

=

N∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ f (xi)
∫ b

a
hi(x)w(x)dx︸��������������︷︷��������������︸

Hi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
N∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ f ′(xi)
∫ b

a
hi(x)w(x)dx︸��������������︷︷��������������︸

Hi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

N∑
i=1

Hi f (xi) +
N∑

i=1

Hi f ′(xi). (2.43)

Note that the inner integrals, which have been labeled Hi and Hi depend only on the

weight function w(x) and (via the definitions of hi(x) and hi(x)) the location of the abscissas,

but not on the function f (x) that we are trying to interpolate. This allows Hi and Hi to be

pre-computed.

The error term given in Equation (2.42) gives the interpolation error. To get the

integrated error E, simply integrate Equation (2.42)

E =
∫ b

a
f (x)w(x)dx −

∫ b

a
p f (x)w(x)dx

=

∫ b

a
E(x)w(x)dx

=

∫ b

a

f (2N)(ξ)
(2N)!

[π(x)]2w(x)dx

=
f (2N)(η)
(2N)!

∫ b

a
[π(x)]2w(x)dx. (2.44)

The last part of Equation (2.44) makes use of the Mean Value Theorem ([14], pg 84),∫ b

a
f (x)g(x)dx = f (x̂)

∫ b

a
g(x)dx, a ≤ x̂ ≤ b. (2.45)

A new value η in the interval [min {xi} ,max {xi}] sets the amplitude of the error. The

actual value of η is not important for the error analysis, rather the worst case error is the
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largest value of f (2N)(x) in the interval defined by smallest and largest roots. The error

decreases with the number of terms as 1/(2N)!. Finally, the scale is determined by the

integral of Equation (2.44). This factor is solely dependent on the choice of abscissa points

which define π(x) and the weight function w(x).

2.3.4 Orthogonal Polynomials.

The Hermite interpolation quadrature is exact for solving integrals of order 2N − 1

and lower. Unfortunately, as written in Equation (2.43) it requires the evaluation of

2N coefficients and the calculation of the derivatives f ′(x). Recall the definition of the

derivative coefficients from Equation (2.43)

Hi =

∫ b

a
hi(x)w(x)dx

=

∫ b

a
(x − xi)[li(x)]2w(x)dx

=

∫ b

a
(x − xi)

[π(x)]2

(x − xi)2[π†i (xi)]2
w(x)dx

=

∫ b

a

π(x)

π†i (xi)

π(x)

(x − xi)π
†
i (xi)

w(x)dx

=
1

π†i (xi)

∫ b

a
π(x)li(x)w(x)dx. (2.46)

The coefficients Hi become zero if the integral in Equation (2.46) is zero. This is

equivalent to the two polynomials π(x) and li(x) being orthogonal under the weight w(x).

Quadrature rules of the form of Equation (2.24) with orthogonal polynomials are called

Gaussian Quadratures [9][11]. These quadratures are very efficient due to their high-

degree polynomial accuracy and low number of nonzero coefficients.

The orthogonality can be expressed as an inner product in a Hilbert space defined by

w(x)

〈π, li〉w =
∫ b

a
π(x)li(x)w(x)dx. (2.47)

Two polynomials pi(x) and pj(x) are orthogonal if
〈
pi, pj

〉
= 0 for i � j.
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The polynomial π(x) is composed of roots at the abscissas, and is of order N − 1.

Evans [9] notes that for π(x) to be orthogonal to all li(x) it is sufficient to be orthogonal

to all polynomials of order N − 2 and less. This is accomplished by ensuring all π(x) is

orthogonal to all other polynomials.

The orthogonality condition sets the value of Hi to zero, and the integrated Hermite

interpolation in Equation (2.43) becomes

I f =

∫ b

a
f (x)w(x)dx ≈ Ipf

Ip f =

N∑
i=1

Hi f (xi) (2.48)

Note that Hi in Equation (2.48) is the same form as ci in Equation (2.24). This leads

to the definition of the weight coefficients as

ci = Hi =

∫ b

a
hi(x)w(x)dx

=

∫ b

a
[1 − 2l′i(xi)(x − xi)][li(x)]2w(x)dx. (2.49)

The orthonormal polynomials for a given weight w(x) are unique. Techniques for

determining the coefficients are given in [9–11, 15]. In general the polynomial coefficients

are irrational, but extensive tables of numerical values are given in [16].

2.3.5 Practical Use.

The above derivation shows that integration under a specific weighting function,

w(x), yields a set of orthonormal polynomials which are unity at their roots, and those

roots become the abscissa points for the quadrature. It is convention to name the set

of coefficients ci and abscissas {xi} after the underlying orthogonal polynomial. In

practice several standard orthogonal polynomials are used almost exclusively and these

are summarized in Table 2.1.

Many of the orthogonal polynomials are only orthogonal over ‘standard’ bounds

[−1, 1]. If the problem requires integration of bounds [a, b], the affine transformation [9]
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Table 2.1: Common Gaussian Quadrature Rules (after [10]).

Polynomial Name w(x) [a, b]
Legendre 1 [−1, 1]
Hermite e−t2 [−∞,∞]
Laguerre e−t [0,∞]

Chebyshev (first kind)
1√

1 − x2
[−1, 1]

Chebyshev (second kind)
√

1 − x2 [−1, 1]

may be used to transform the abscissas {xi}, which integrate over the standard bounds, to

new abscissas x′i which integrate over [a, b] :

x′ =
b − a

2
x +

b + a
2

(2.50)∫ 1

−1
f (x)w(x)dx =

∫ b

a
f (x′)w(x′)dx′.

Under this transformation the quadrature weights ci do not change. The new

quadrature rule is

x′i =
b − a

2
xi +

b + a
2

(2.51)∫ b

a
f (x)w(x)dx ≈

N∑
i=1

f (x′i)ci. (2.52)
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Based on the use of tables of pre-computed polynomials, the following steps can be

used to approximately compute the integral of f (x):

1. Based on the weight function w(x) for the problem at hand, decide which

orthogonal polynomial is most appropriate.

2. Decide on a polynomial order N (the number of abscissa points).

3. Compute (or look up in a table) the roots of the Nth-order orthogonal

polynomial. These will be the abscissa points {xi}.

4. Compute (or look up in a table) the weight coefficients. These will be the ci.

5. Compute the value of the function at the N abscissa points (transform if

necessary).

6. Multiply each weight ci with the function value f (xi).

7. Sum these terms together. The result is the approximation of the integral.

2.3.6 Summary of Gaussian Quadrature.

We now recall the important points of the derivation of the Gaussian quadrature:

• It is desired to approximate the weighted integral of a function f (x) as a sum of N

abscissa points.

• The function is approximated by a polynomial p f (x), and the weighted integral of

pf (x) is an approximation of the weighted integral of f (x).

• The first approximation (the Laplace interpolation) of f (x) is the weighted sum of

Laplace factors li(x). The Laplace factors are polynomials constructed so that each

li(x) has unity value at a specific abscissa and zero value at the other abscissas. The

weight coefficients are the values of f (x) at the abscissas.

24



• The error in the Laplace interpolation approximation of f (x) is proportional to the

Nth derivative of f (x), and scales inversely with N!.

• An improved approximation (the Hermite interpolation) is a weighted sum of two

polynomials hi(x) and hi(x). The coefficients of hi(x) are the values of f (x) at the

abscissas and the coefficients of hi(x) are the values of the derivative f ′(x) at the

abscissas. The polynomials hi(x) and hi(x) are each constructed from the Laplace

factors.

• The error in the Hermite interpolation approximation of f (x) is proportional to the

(2N)th derivative of f (x), and scales inversely with (2N)!.

• The integral of f (x) is approximately the integral of the Hermite interpolation

polynomial p f (x). The weighted integrals of hi(x) and hi(x) are independent of f (x)

and may be pre-computed.

• If the abscissas correspond to the roots of an orthonormal polynomial, the derivative

term in the Hermite interpolation p f (x) integrates to zero. Therefore only the N

computations of the values of f (x) at the abscissa points are necessary to achieve the

Hermite interpolation error performance.

In the next section, we show how the Gaussian quadrature can be used to solve

integrals like those found calculating the posterior distribution.

2.4 Calculation of Bayesian Posterior

The calculations described in Equation (2.21) involve the calculation of the observa-

tion probability p(y). In general, this is accomplished by computing a difficult (sometimes

impossible) integral. The denominator of Equation (2.21) serves to ensure that the posterior

distribution is a true probability distribution, i.e. it integrates to one. For many problems,
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[8, 17] the MAP estimate given in Equation (2.22) is merely a search for the highest value

in function space and the actual value of the peak probability density is unimportant.

For this research, we will often compare results of different probability spaces and the

normalization constant that is the denominator of Equation (2.21) will not be the same

in each space. Further, in the measurement of confidence described below, it will be

seen that integrals of this sort over finite intervals have meaning as probability masses.

It will therefore be necessary to calculate this D-dimensional integral (repeated here for

convenience)

p(y) =
∫
RD

p(y |Θ)p(Θ)dΘ. (2.53)

2.4.1 Monte-Carlo Numerical Integration.

The Monte-Carlo method is a sampling-based method. It can be viewed as an

application to the simplest estimator for the expected value a random variable X: the

average of a large number of samples. Consider the expected value [6] of a function f (x)

of some continous random variable X

E[ f (x)] =
∫ ∞

−∞
f (x)p(x)dx. (2.54)

The integral in Equation (2.54) can be approximated using the Strong Law of Large

Numbers [18] as

E[ f (x)] = lim
N→∞

1
N

N∑
i=1

f (xi), xi ∼ p(X). (2.55)

For integrals of the form of Equation (2.53) we choose the evaluated function f (x) =

p(y |Θ) and the weight probability as p(Θ). The integral then becomes

∫
RD

p(y |Θ)p(Θ)dΘ ≈ 1
N

N∑
i=1

p(y |Θi), Θi ∼ p(Θ) (2.56)

= p̂(y).
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Note that the integrated function p(y |Θi) is dependent on the observed data y. This

estimate of the denominator requires repeated draws of a multidimensional Θi from a

random number generator with a precise distribution. Several methods, such as the

Metropolis sampler, and Gibbs sampler [17] can be used to generate the required random

draws.

Because the Monte Carlo process can be viewed as an estimator of p(y) it has well-

studied properties. Although Monte Carlo integration is a commonly-used technique it is

recommended ([19], pg. 162) for low-accuracy integrals of functions that are not strongly

peaked. As we will show in Chapter 4, often the function we wish to integrate (the

likelihood function) is Gaussian and can be quite peaked. Therefore, we will not use Monte

Carlo integration further in this research.

2.4.2 Gauss-Legendre Quadrature Numerical Integration.

The results of the Gaussian quadrature developed in Section 2.3 can be applied to

integrals of the form of Equation (2.53). Recall that the Gaussian quadrature solves

integrals of the form

∫ b

a
f (x)w(x)dx ≈

N∑
i

ci f (xi).

All of the integrals of interest in this research will be of finite bounds (usually due to

limitations on the priors, see Section 3.2). The choice of weight function will, in general, be

the uniform function w(x) = 1. Based on the summary in Table 2.1, these two constraints

lead to the use of the Gauss-Legendre rules. We will make use of the affine transformation

described in Section 2.3.

This research focuses on parameter sets Θ that are multidimensional. Let each scalar

parameter θi be bounded by a corresponding region in parameter space Pi. For a given
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number D of independent parameters, the integral expands as follows

p(y) =
∫
RD

p(y |Θ)p(Θ)dΘ

=

∫
P1

∫
P2

...

∫
PD

p(y | θ1, θ2, ...θD)p(θ1, θ2, ...θM) dθD...dθ2...dθ1. (2.57)

The Gauss-Legendre quadrature is only defined for integrals over the range [−1, 1].

The calculation of Equation (2.53) requires integration limits [min θ,max θ]. The affine

transformation of the Legendre roots {xi} yields new abscissa points for the required

integration limits ([9], pg 42)

θki =

(
maxPk −minPk

2

)
xi +

(
maxPk +minPk

2

)
. (2.58)

Each integral of Equation (2.57) can be evaluated as a separate Gauss-Legendre

quadrature, under the affine transformation. For the Bayes integrand p(y |Θ)p(Θ) that can

be approximated by a quadrature of order N, the denominator (Equation (2.57)) becomes

p(y) ≈
N∑

k1=1

ck1

N∑
k2=1

ck2 ...
N∑

kD=1

ckD p(y | θk1 , θk2 ...θkD)p(θk1 , θk2 ...θkD)

≈
N∑

k1=1

N∑
k2=1

...

N∑
kD=1

(
ck1ck2 ... ckD

)
p(y | θk1 , θk2 ...θkD)p(θk1 , θk2 ...θkM ). (2.59)

Thus, the integral Equation (2.53) can be approximated by a weighted sum of abscissa

points. The coefficients
{
cki

}
are defined by the Legendre polynomials and available in

numerical form from references such as [15] and [16]. These integral solutions enable the

calculation of the posterior density p(Θ | y), which is then used to find optimum estimates

of the parameters.

2.5 Credibility and Confidence

Typical parameter estimation methods, such as maximum likelihood (Equation (2.19))

and maximum a posteriori (Equation (2.22)), aim to find a single parameter vector Θ for

the given data y. However, often the consumer of the estimate (such as higher-level ATR
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software) desires more than just the best estimate; they may desire some measure of how

‘good’ the estimate is. In the statistics community, it is common to distinguish between

these measures of goodness for Bayesian methods like the MAP estimate of Equation (2.22)

and the ‘likelihoodist’ or ‘frequentist’ methods like the MLE estimate of Equation (2.19).

The mathematical techniques are very similar. This research focuses on Bayesian methods

and so the next section considers the idea of the Credible Interval: a Bayesian idea similar

to the frequentist ‘Confidence Interval’.

2.5.1 Credible Interval.

The ‘credible’ interval is used for Bayesian measurements as a measure of goodness-

of-estimate. Gill, [17] p.45, defines a credible interval as a contiguous region C in

parameter space such that a certain posterior probability mass α is attained:

C = arg
C′

{∫
C′

p(Θ | y)dΘ = α

}
. (2.60)

2.5.2 Intuitive Meaning of the Credible Interval.

Gill [17] poses a very important intuitive definition for the meaning of the credible

interval. The credible interval for the desired mass α is the region where the true value

of the parameter Θ is covered (100α) percent of the time. The important term is the

coverage of the true parameter, upon a certain number of repeated observations. Using

this definition makes the credible interval similar in sentiment to the idea of ‘parameter

resolution’ meaning the precision of the estimate is controlled by the size of the interval.

Using this definition, the target probability mass α takes on a new meaning. The total

probability over all parameter space P must, by definition, be one

∫
P

p(Θ | y)dΘ = 1. (2.61)
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The credible interval C and its compliment ¬C are disjoint and span the whole parameter

space

C
⋂
¬C = ∅,

C
⋃
¬C = P. (2.62)

By Equation (2.62) the regions C and ¬C form a partition of P, and therefore∫
P

p(Θ | y)dΘ =
∫
C

p(Θ | y)dΘ +
∫
¬C

p(Θ | y)dΘ∫
¬C

p(Θ | y)dΘ = 1 − α. (2.63)

The Gill definition, when applied to Equation (2.63) leads to the interpretation that the

quanitity 1−α represents the probability that the true parameter Θ lies outside the credible

region. Note that the value of (1 − α) is also a probability and represents the probability of

a miss [20].

2.6 Computational Requirements

This research will focus on the Gauss-Legendre quadrature as its main technique for

solving integrals. As shown in Equation (2.59), for an integral of D parameter dimensions

using an N order quadrature, the number of calculations of p(Θ | y) scales like O(ND).

The received phase history is a complex-valued vector consisting of F frequencies

and K azimuth and elevation points. The complex vector is of length FK. The complex

phase results from the range terms Rt, Rr and ΔR(Θ) in Equation (2.1). In this research, we

consider the received phase history y to be the complex phase history ‘flattened’ into a real

vector of length M = 2FK. The flattened vector (see [21]) is the concatenation of the real

and imaginary parts of the complex vector Strue given by Equation (2.1) for the given shape

and corrupted by noise N as

y =
[
Re(Strue)
Im(Strue)

]
+ N. (2.64)
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For consistency we will make use of a similarly flattened parametrized test phase

history S
Γ

as

S
Γ
=

[
Re
(
S(k)

)
Im

(
S(k)

) ] . (2.65)

The subscript Γ represents the shape type and thus the particular form of the model S
Γ

(see

[1, 21]).

The likelihood density p(y|Θ) used in this research represent received shape phase

histories in the presence of Additive White Gaussian Noise (AWGN). The resulting

likelihood is normally distributed whose mean is the (flattened) Jackson phase history

S
Γ
(Θ) and covariance σ2I ([18])

p(y|Θ) =

(
1√

2πσ2

)M

exp

[
− 1

2σ2

(
y − S

Γ
(Θ)

)T (
y − S

Γ
(Θ)

)]
. (2.66)

The inner product

(
y − S

Γ
(Θ)

)T (
y − S

Γ
(Θ)

)
(2.67)

is a computationally intensive operation. For an observation vector y of length 2FK

there are 2FK multiply-and-add operations, as well as 2FK subtractions. The resulting

complexity is O(2FKND) operations.

This results in an enormous computational burden on the simulation platform. In

order to efficiently perform the Gauss-Legendre quadrature, an efficient implementation of

Equation (2.59) is required.

2.6.1 Graphics Processor Units.

A calculation of the form of Equation (2.59) is inherently bound by the speed of the

simulation platform. In a standard microprocessor system each term of each summand

is evaluated in a lockstep fashion as a for loop. Prior to the late 1990s microprocessor

researchers focused their efforts on making the processor itself faster. The result was

high Gigahertz clock speeds. However the demands for ever increasing computation
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power, particularly in real-time graphics and gaming [22], began to outpace microprocessor

speeds. The result was a shift at the start of the 21st century towards graphics cards with

multiple, simple processor cores designed for the type of repetitive numeric computations

used in graphics simulation. These specialized graphics processors became known as

Graphics Processing Units (GPUs). Unlike CPU microprocessors which may have 4

to 8 cores, a typical GPU can have hundreds or thousands of microprocessors running

simultaneously.

2.6.2 CUDA GPUs.

Early GPUs were developed specifically for graphics-intensive operations like

OpenGL and DirectX [22]. The CUDA platform was developed by the NVIDIA

Corporation to allow programmers access to the computational capabilities of the graphics

card for general-purpose and scientific computing. The CUDA programming interface

is increasingly supported in the MATLAB programming environment. Over the course

of this research MATLAB was used to define the architectural framework and high-

level computation, and calls to the CUDA processors were used for the intense repetitive

computations.

Developing CUDA software requires writing code for specialized compilers provided

by NVIDIA and Microsoft [22, 23]. The CUDA language itself is an extended version

of C++. The programmer writes the algorithm implementation similarly to a standard

C++ program which is compiled into a pseudo-assembly language called a PTX file.

These files are portable across different CUDA processors. The GPU has its own memory

(with some exceptions, see [22]) that is independent of the main computer memory. The

CUDA features used in this research cannot use computer main memory, nor can computer

applications use GPU memory directly. The data must be explicitly transferred, and this

can be a considerable bottleneck.
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Execution of the PTX file invokes the CUDA driver, a Windows- or Linux device

driver that interfaces with the GPU hardware. The driver loads the PTX file onto the GPU,

executes the code, transfers the relevant data, then returns control of the GPU back to the

operating system for normal graphics use (such as updating the screen).

2.6.3 MATLAB Use.

When a user wishes to execute an algorithm on the GPU via MATLAB a special

MATLAB object called a CUDA Kernel is created with the location of the PTX file given.

At this point the CUDA driver pre-loads the PTX file into the GPU. The kernel can be

executed like a normal MATLAB function.

As noted before, memory transfers from the computer main memory (where

MATLAB can use it for, e.g., drawing figures) and the GPU memory (where the GPU uses

it) must be done carefully. MATLAB virtualizes the objects (such as matrices and vectors)

held on the GPU in the form of the gpuArray data type. Although in most cases MATLAB

will transparently perform the transfer, it is advisable to keep the data on the GPU for as

long as possible. Most MATLAB functions such as arithmetic, trigonometry and memory

management can be performed directly on the GPU. The user may then manually transfer

back to ‘normal’ MATLAB memory for graphics plotting or display by use of the gather

function.

2.7 Summary

This chapter reviewed the Jackson phase history models for six canonical shapes. The

idea of a ‘best guess’ estimation of the parameter vectorΘ requires the use of elements from

probability theory. The likelihood function p(y |Θ) views the observation y as random and

the parameter is fixed but unknown. Bayes’ Rule is used to incorporate prior knowledge

about the parameters and changes the view to that of a random parameter Θ and a fixed

observation y which is known. Bayes’ Rule requires solving of a difficult integral which is

aided by the Gaussian quadrature. The idea of confidence in the estimate of the parameter
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was introduced as the credible interval. The credible interval allows us to make statements

the probability that the true parameter vector is located in a region of possible parameter

guesses. Finally, the CUDA GPU was introduced and we describe how it is an enabling

technology to perform the large number of calculations needed to solve the integration

problem of Bayes’ Rule.
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III. Methodology

This section describes new techniques and the methodology developed over the course

of this research. The assumptions and methods described herein will carry to Chapter 4.

3.1 Assumptions and Data Model

3.1.1 Radar Environment.

This research assumes the received data is in the form of complex (I and Q) phase

history. The radar system is assumed to be a monostatic SAR operating in spotlight mode,

however the technique can be extended to bistatic radar supported by the Jackson model.

The flight path is assumed known in the form of azimuth and elevation points registered

at each pulse. Arbitrary flight paths are permitted. The flight path is assumed to be such

that the far-field plane wave propagation model is appropriate. The transmitter is assumed

to transmit a waveform at center frequency Fc and bandwidth Bw. The waveform may

be a chirp or any other waveform that demodulates to a phase history. The receiver is

assumed to have a multiplicity N f > 1 of frequency bins spaced equally from Fc − Bw/2

to Fc + Bw/2. The Jackson model supports multiple polarization, however we will only

consider VV (vertical-vertical) polarization. The estimation technique we develop here is

not limited to VV polarization.

3.1.2 Noise Model.

The received signal is assumed to be corrupted by Additive White Gaussian Noise

(AWGN) of known variance σ2. The noise samples are assumed to corrupt the I and Q

channels independently. This received noise models all noise including thermal noise,

receiver electronic noise, and atmospheric noise. Ground clutter, coherent interferers,

colored noise, multi-path and jamming are not considered.

35



3.1.3 Target Model Assumptions.

The target scene is assumed to contain a known number of canonical shapes of

unknown type and unknown parameters. The method of determining the number of shapes

is not considered in this research but could potentially make use of imaging techniques

described in [1, 24] . All shapes are assumed to be large enough to be within the resolution

of the radar platform and small enough to be outside of aliasing zones. The received phase

history is assumed to be the coherent sum of individual shape phase histories, and so the

effects of shadowing and multiple-bounce effects (except those modeled by the canonical

shapes themselves) are ignored.

We assume that, within a shape, the parameters themselves are statistically indepen-

dent, identically distributed (IID). As a result we treat each parameter of a shape without

regard for the values of the others.

Finally, for the purposes of this research, only mononstatic radars are explored,

meaning that for all modeled shapes the transmitter and receiver locations are the same.

Note that the methods developed bear no regard to this assumption and could be extended

in the future to explore bistatic cases.

3.1.4 Integration with Automatic Target Recognition.

The ATR software is assumed to be a higher level system which provides the prior

distributions of parameters. The estimator described in this research provides estimates of

the type and parameters of each shape, as well as a measure of the ‘confidence’ of each

estimate.

3.2 Bounds on the Parameter Space

The majority of this research involves the solution of probability integrals. In a naive

form the domain of parameter space (length, width, radius, X, Y, Z, roll, pitch, yaw) is

infinite. In practice, the finite radar bandwidth and discrete sampling of digital electronics

presents aliasing, and certain parameters (such as the size parameters) are inherently
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positive. The bounds of the parameters become very important in the solution of the integral

and must be carefully considered. Should parameter bounds be taken outside these limits,

aliasing may occur in interval estimates, and incorrect constants may be calculated for, e.g.

marginalization and the Bayesian denominator.

3.2.1 Position Parameters.

The canonical shapes described in [1], in general, are factored as a size- and pose-

dependent magnitude term Mshape(Θsize,Θpose) multiplied by a location-dependent phasor

exp(− jk • r). The minimum position spacing is given by the range resolution as ([25], pg.

23)

ρu =
c

2Bw
, (3.1)

and the minimum cross-range spacing is given as ([25], pg. 23)

ρy =
4π
λ

2 sin

(
Δφ

2

)
, (3.2)

where Δφ is the azimuthal extent of the flight path and λ is the wavelength of the carrier

frequency.

Jakowatz [25] shows that the target scene is of fixed extent D, is given by

Dmax =
λmin

2Δφ
, (3.3)

where Δφ is the distance between azimuthal flight path samples.

3.2.2 Size Parameters.

We require that the shapes be located within the target scene, therefore the size of the

object must be such that it is smaller than the scene diameter. There are added complexities

when the effects of pose angle are considered, since the effective length of the object (which

causes aliasing) may be different than the actual scene extent Dmax.

3.2.3 Pose Parameters.

As noted above, there is coupling between size and pose angles. However, more

importantly, the Jackson models described in Chapter 2 often have limits on the azimuth
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and elevation angles φt, φr, θt and θr. The mapping of these angles onto the roll-pitch-yaw

parameters is not straightforward. Further research may focus on methods for determining

these bounds.

3.3 Sampling the Posterior Density

Bayes’ Rule (Equation (2.21)) provides a method of calculating a posterior distribution

p(Θ | y) (which is directly related to the parameters in question) from the priors p(Θ)

(defined regardless of any observation) and the likelihood p(y |Θ) (which is known from

the observed data). However, the posterior is a probability density function (PDF) and

so gives only values for specific parameter sets Θ. Additionally, the probability of any

specific parameter set is zero. Therefore, the posterior density is infinitely dense, and has

high dimensionality even for a small number of shapes.

Silverman [26] discusses methods of using a small number of samples to interpolate

the density function. Our research focuses on the opposite: given a density function, find

a small set of values that encompass the important features of that density. Ideally, it is

desirable to have a ‘multi-zoom’ capability so that increasing the number of points shows

finer detail of the density. Such a multi-zoom capability can be achieved through the use of

probability mass intervals.

3.3.1 Probability Mass Intervals.

Recall the definition of a probability density function p(X). The probability P that the

random variable X is between values a and b is given by ([4])

P(a ≤ X ≤ b) =
∫ b

a
p(X)dX. (3.4)

Let [a, b] to be the interval and the probability P(a ≤ X ≤ b) to be the probability

mass on the interval.

Consider an interval [a, b] where p(X) has a high value somewhere inside. This

intuitively corresponds to a region of high probability. Further, let the regions outside the
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interval [a − ε1, a] and [b, b + ε2], ε1,2 ≥ 0 be areas where p(X) has low value. The density

p(X) must be nonnegative since it is a true probability density. Therefore,

P(a − ε1 ≤ X ≤ b + ε2) =
∫ b+ε2

a−ε1
p(X)dX

=

∫ a

a−ε1
p(X)dX︸����������︷︷����������︸

(small)

+

∫ b

a
p(X)dX︸��������︷︷��������︸

(large)

+

∫ b+ε2

b
p(X)dX︸�����������︷︷�����������︸

(small)

(3.5)

≥
∫ b

a
p(X)dX

≥ P(a ≤ X ≤ b). (3.6)

Equation (3.5) shows that increasing the size of the interval increases the probability

mass. Similarly, should one of the areas [a − ε, a] or [b, b + ε] be a region where the

probability density is high (corresponding to a second high-probability region) the new

probability mass would again be larger.

3.3.2 Bayesian Cost and Maximization.

The estimation problems that this research focuses on are related to finding peaks of

the posterior density p(Θ | y). Peak finding can also be viewed as finding intervals of large

probability mass. By the results of Equation (3.5) a large probability mass over a certain

interval means there is possibly a sub-interval inside that also contains a large probability

mass.

We will now show that the peak finding is analogous to the standard maximum a

posteriori (MAP) estimate described in ([5], Ch. 11). Consider the function Ch(ξ) to be

the ‘cost’ of an estimated parameter θ̂ that is some distance ξ away from the true parameter

θ, ξ = θ − θ̂. The average cost E[Ch(ξ)] is called the Bayes risk. An optimum Bayesian

estimator is one that minimizes this risk.

39



Following [5], we consider the hit-or-miss cost function. Let Chm(ξ) be zero cost if the

estimate is within a ‘hit width’ ±ε from the true value, and unit cost outside:

Chm(ξ) =

{
0 |ξ| ≤ ε
1 |ξ| > ε. (3.7)

The Bayes risk for this cost is then the expected value with respect to the joint

probability p(y, θ),

E[Chm(ξ)] =
∫
R

∫
R

Chm(θ − θ̂)p(y, θ)dydθ

=

∫
R

∫
R

Chm(θ − θ̂)p(θ | y)p(y)dydθ

=

∫
R

[∫
R

Chm(θ − θ̂)p(θ | y)dθ

]
p(y)dy. (3.8)

The last step makes use of the Fubini Theorem ([14], pg. 61) to change the order of

integration.

Following [5], we will minimize the Bayes risk by minimizing the inner integral

of Equation (3.8). Substituting the definition of the cost function in Equation (3.7), the

minimization of Equation (3.8) becomes

arg min
θ̂

E[Chm(ξ)] = arg min
θ̂

∫
R

Chm(θ − θ̂)p(θ | y)dθ

= arg min
θ̂

∫ θ̂−ε

−∞
p(θ | y)dθ +

∫ ∞

θ̂+ε

p(θ | y)dθ

= arg min
θ̂

∫ ∞

−∞
p(θ | y)dθ −

∫ θ̂+ε

θ̂−ε
p(θ | y)dθ

= arg min
θ̂

1 −
∫ θ̂+ε

θ̂−ε
p(θ | y)dθ

= arg max
θ̂

∫ θ̂+ε

θ̂−ε
p(θ | y)dθ. (3.9)

As seen in Equation (3.9), the optimum estimate θ̂ is a region where the posterior

density p(θ | y) is largest. In the typical treatment such as [5], the MAP estimate θ̂MAP is the

limit as the ‘hit’ width ε → 0, which results in finding the mode of the posterior density.
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However, if ε remains finite, the integral in Equation (3.9) bears striking resemblance

to the definition of the probability mass in Equation (3.4) when a and b are replaced by

θ ± ε and therefore provides a new meaning of the MAP estimate.

3.3.3 MAP Estimate for Probability Mass.

Note the analogy of Equation (3.9) to the probability mass of Equation (3.4) would

assume the estimate θ̂ could ‘slide’ around a continuum of parameter estimates. We wish

to develop an optimum estimator that is tailored to the discrete nature of probability mass

intervals of Equation (3.5). Consider the intervals themselves and how they partition the

posterior probability space. Define a new distance metric ξ′i that is the distance from the

‘true’ parameter θ to a series of discrete, equally spaced points θ̂i in parameter space:

ξ′i = θ − θ̂i (3.10)

= θ − 2iε. (3.11)

The parameter ε is the interval half-width (specified by the user) and the index i

is an integer that indexes which region of the parameter space the distance is being

measured. For example, assume we have a one-dimensional parameter space to estimate

X location (in meters) of a certain canonical shape, and all other parameters are

‘given’. At an interval of 0.1 m, the half-width ξ is 0.05 m. The values of ξ ′i are

{...θ − 0.15, θ − 0.05, θ + 0.05, θ + 0.15, ...} meters. The set ξ′i form a sequence of discrete

values for a given theta. As defined in Equation (3.10), the metric is an abstraction whose

value only becomes concrete when a specific value of θ is given.

The result given in Equation (3.9) was very close to the probability mass definition,

so we continue to use the hit-or-miss cost function defined in Equation (3.7) with the new

distance metric ξ′i . The optimum estimate is now a function of the index i since the spacing

ε is assumed fixed. The resulting optimization problem is similar to the MAP estimate:

41



arg min
θ̂i

E[Chm(ξ′i )] = arg min
i

E[Chm(ξ′i )]

= arg min
i

∫
R

Chm(θ − 2iε)p(θ | y)dθ

= arg min
i

∫ 2iε−ε

−∞
p(θ | y)dθ +

∫ ∞

2iε+ε
p(θ | y)dθ

= arg min
i

∫ ∞

−∞
p(θ | y)dθ −

∫ (2i+1)ε

(2i−1)ε
p(θ | y)dθ

= arg min
i

1 −
∫ (2i+1)ε

(2i−1)ε
p(θ | y)dθ

= arg max
i

∫ (2i+1)ε

(2i−1)ε
p(θ | y)dθ

= arg max
i

P
(

(2i − 1)ε ≤ θ ≤ (2i + 1)ε | y ). (3.12)

Notice the last step is simply a probability mass calculation over a certain interval.

Assume the user has already repeated the calculation of probability mass over each discrete

interval in the parameter space, and has stored the corresponding mass in a set {Pi}.

Pi = P
(

(2i − 1)ε ≤ θ ≤ (2i + 1)ε | y ). (3.13)

Then the result of Equation (3.12) shows that the optimum parameter range is

arg min
θ̂i

E[Chm(ξ′i )] = arg max
i

Pi. (3.14)

Equation (3.14), and the corresponding derivation of Equation (3.12) that lead to it, are

a very important result to this research. They provide a statement of the formal optimization

problem and an intuitive result.

To summarize the results of this section, recall the steps leading to Equation (3.14).

We have modified the hit-or-miss cost function Chm(ξ) to include a zero-cost region of

width 2ε, and therefore any parameter estimate θ̂ within ±ε of the true parameter θ is

considered equally, perfectly, correct. It implies that no ‘better’ estimate of θ can be made

than any other estimate within this region. We have also modified the distance metric ξ
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to measure the distance between the true parameter θ and a set of discrete parameters.

This new distance measure ξ′i is equivalent to sampling parameter space and measuring

the distance to the ith sample parameter. The combination of the zero-cost region and

discretized distance means that the optimization given in Equation (3.12) no longer seeks

to find a best parameter, but instead seeks a range of parameters to which the true parameter

is closest. This formalizes the notion that the optimum parameter range for a given input y

is the largest probability mass over a series of masses at equally-spaced intervals.

3.3.4 Probability Mass Interval Algorithm.

Beginning with a few disjoint large intervals. Each interval that has a large probability

mass is subdivided into sub-intervals and their respective probability masses are calculated.

Sub-intervals of low mass are discarded from further study. The process is repeated until the

smallest sub-interval containing nearly all the mass is found. In this case ‘smallest’ means

further sub-division either a) significantly reduces the mass, or b) creates sub-intervals that

are adjacent and also have significant mass. Alternatively the algorithm terminates when a

pre- defined ‘smallest interval’ has been reached. This is summarized below.
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1. Set the initial interval to the bounds of the parameter (scene extent, largest

shape, etc).

2. Partition the interval into M sub-intervals.

3. For each interval, calculate the probability mass.

4. If no interval contains any mass, subdivide into smaller intervals and goto

step 3 otherwise goto step 5.

5. If already at the user-specified minimum interval, terminate.

6. Find each peak that meets some acceptance criteria. For each peak,

subdivide that interval into smaller sub-intervals.

7. For each sub-interval, calculate the probability mass.

8. For each sub-interval, if there is no mass remove the sub-interval from

further consideration.

9. Goto step 5.

3.3.5 Similarity with the Bayesian Denominator Calculation.

The same algorithmic steps used to create the Bayesian denominator in Equation (2.53)

are also used in the calculation of the probability masses. Using the affine transformation

defined in Equation (2.58), a new set of bounds is created for the Gauss-Legendre quadra-

ture Equation (2.59). Further, since a change of bounds only requires a change in the

abscissa points (not the weight coefficients or the steps to implement the quadrature), there

is the potential for significant code re-use.
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3.4 Calculation of Credible Region

The Gill definition in Equation (2.60) shows how statements can be made about the

probability of the true parameters Θ being within a region in parameter space. A region C
that has a high probability of containing Θ may be called a credible region. The credible

region C is an abstract, D-dimensional region in parameter space, not to be confused with

the Bayesian cost function Chm(ξ) of Section 3.3.2. There may be many regions of the

parameter space which satisfy Equation (2.60). In this research, we consider parameter

spaces of D dimensions corresponding to the D shape parameters (X,Y,Z, roll pitch, yaw,

height, length, radius, etc.). The Gill definition only provides a single constraint: the total

probability α of Θ being within the region, and this alone is insufficient to define C.

We consider two separate definitions of the region C that align with common notions

of credibility (or confidence) based on if the parameter dimensions of Θ should be treated

separately or not. We designate these two definitions as the Credible Interval and the

Credible Set. In each case, we begin with a set of probability masses Pk1 ,...kD that are the

multidimensional analog of those calculated by Equation (3.13). Equation (2.60) requires

that the combined probability mass over C be α.

3.4.1 Credible Set.

We postulate that any useful definition of a credible region must contain the highest-

probability intervals of parameter space. Therefore we define the credible set as the indices

of the M largest probability masses Pk1,...kD such that their combined mass is α. Let O[P]

denote the ordering of the probability masses from largest to smallest such that O[P] returns

the indices (k1, ..., kD) for the ith largest mass

O[P](i) : N �→ N
D such that i > j =⇒ PO[P](i) ≥ PO[P]( j). (3.15)

Then the credible set CP can be defined based on the ordered masses as

CP =

M⋃
i=1

O[P](i) such that
M∑

i=1

O[P](i) = α. (3.16)
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In practice, we cannot expect that the probability masses sum exactly to the prescribed

α. The problem may be handled by defining upper and lower credible sets C+P and C−P,

respectively. The sets are defined as

C+P =
M⋃

i=1

O[P](i) such that
M−1∑
i=1

O[P](i) < α ≤
M∑

i=1

O[P](i), (3.17)

and

C−P =
M⋃

i=1

O[P](i) such that
M∑

i=1

O[P](i) ≤ α <
M+1∑
i=1

O[P](i). (3.18)

The upper credible set C+P has at most one ‘extra’ probability mass, making it slightly

too big. Likewise the lower credible set C−P has at most one ‘missing’ mass, making it

slightly too small. Thus C+P and C−P bound the region and (combined with the multizoom

techniques described in Chapter 4) could potentially be useful in certain interval analysis

techniques such as SIVIA described in [27].

3.4.2 Credible Intervals.

The ideal credible set CP defined in Equation (3.16) is likely to be a region of arbitrary

shape, and fundamentally is a statement about the entire parameter space. Because the

parameters considered in this research are presumed independent (with the exception noted

in Section 4.3), it seems reasonable that we make statements about individual parameter

dimensions separately. We call this the Credible Interval. For example, the user may

wish to know about the credible region when considering only the intervals of the X

location parameter, located at the jth ordinate among the probability masses. In this case

the credibility is taken over the marginal probability mass set
{
Pkj

}
. Because probability

masses are true probabilities (the denominator in Bayes’ Rule has been calculated) the

marginalization is simply a sum along the other dimensions. Consider the case where we

wish to know the credible interval along dimension j. The marginal probability mass set
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{
Pkj

}
is

Pkj =
∑

k1

...
∑
k j−1

∑
k j+1

Pk1...kD (3.19)

The marginal mass set
{
Pkj

}
is just a new set of probability masses, with all the features

discussed above. Therefore, the credible interval is, in fact, the credible region along a

marginal mass set. We denote this interval CP j .

3.5 GPU Implementation

For increased speed, several of the core functions are implemented in the CUDA

GPU. The Gauss-Legendre quadrature Equation (2.59) requires repeated evaluation of the

Jackson model phase history functions described in Section 2.1. These functions perform

largely the same calculation for a given parameter set Θ: repeately apply the canonical

shape magnitude M and phase calculations for all azimuth and elevation angles θ, φ, over a

range of wave numbers k.

The CUDA implementation of the file Model PhaseHistory from [1] constructs a 3-

dimensional array: a dimension corresponding to azimuth/elevation points, a dimension

corresponding to wavenumber k, and a dimension corresponding to the parameter set

for a given abscissa in Equation (2.59), as shown in Figure 3.1. The slices of k and

azimuth/elevation represent ‘test phase histories’ to be applied to the likelihood function

next. The CUDA implementation uses a separate PTX file for each canonical shape to

overcome MATLAB’s inability to resolve multiple de-mangled C++ function names. C++

allows the programmer to code several implementations of a function that all have the same

name (for example the function add() may be defined for scalar or vector data types. This

process is known as overloading [28]. The C++ compiler re-names the functions internally

in a form known as the mangled name [29]. Our experience with Matlab 2012b is that it

has trouble with these names. This results in errors trying to use a single PTX file for all

phase history models.
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Figure 3.1: Layout of phase history data blocks.

A second CUDA function performs the combined subtraction and inner product in

Equation (2.67). The test phase histories are always subtracted from the same received

data vector y. The vector y is stored in the GPU high-speed shared memory.

A final CUDA function applies the weight coefficients ck1 ...ckD and the prior

distribution p(Θ). The result is returned to the main memory for use in displays and the

credible interval calculation.
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IV. Results and Analysis

4.1 Validation of GPU Code

This section describes the results of validating the implementation of the Jackson

Model PhaseHistory MATLAB file in the CUDA graphics processing unit (GPU). As

mentioned Section 3.5, a separate CUDA code file is created for each of the canonical

shapes. To ensure consistency with the Jackson implementation (which is considered to

be the baseline) each PTX file is subjected to a verification process. In this process a

series of 10,000 trials, each with a random realization of position (X, Y, Z), size (radius,

length, height), and pose (roll, pitch, yaw) for a given shape. Only those parameters

appropriate for a shape are applied. The simulation of, for example, the radius for a

plate shape is not performed. The calculations for radar cross-section (RCS) are given

in the tables of Section 4.2. These parameter realizations are applied to both the Jackson

Model Phasehistory file and the CUDA implementation.

The resulting phase histories for each parameter set are compared sample-by-sample,

and two quality metrics are extracted for the entire realization: maximum absolute

difference over the phase history, and mean absolute difference over the phase history. The

sample-by-sample difference of the Jackson and CUDA implementations are normalized

by RCS so that different parameter realizations can be compared without regard to scale

factor. Figures 4.1-4.6 show the results of the simulations. The figures may be interpreted

as both an overall error between the CUDA and Jackson implementations (by examining

the trend over all trials) and as an indicator of potentially problematic combinations of

parameters (by observing high error isolated to a single trial). Figures 4.1-4.6 show that

the (normalized) mean error is on the order of 10−5. This is considered sufficient for the

purposes of this research since the noise applied in the detection scenarios is well above

10−5. Future research may focus on the examining the differences between MATLAB and
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CUDA in the numerical implementation of key transcendental functions such as sin(x),

cos(x) and atan2(y,x).
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Figure 4.1: CUDA implementation error for plate (Top) measured using max absolute

difference, and (Bottom) measured using mean absolute difference.
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Figure 4.2: CUDA implementation error for dihedral (Top) measured using max absolute

difference, and (Bottom) measured using mean absolute difference.
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Figure 4.3: CUDA implementation error for top-hat (Top) measured using max absolute

difference, and (Bottom) measured using mean absolute difference.
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Figure 4.4: CUDA implementation error for sphere (Top) measured using max absolute

difference, and (Bottom) measured using mean absolute difference.
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Figure 4.5: CUDA implementation error for cylinder (Top) measured using max absolute

difference, and (Bottom) measured using mean absolute difference.
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Figure 4.6: CUDA implementation error for trihedral (Top) measured using max absolute

difference, and (Bottom) measured using mean absolute difference.
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4.2 Estimation with Uniformative Priors

This section describes the results of parameter estimation with uniformative priors,

i.e. p(Θ) is some constant such that
∫
R

p(Θ)dΘ = 1. For several scenarios, a test shape is

generated with additive noise. Unless otherwise specified, the simulation parameters used

are shown in Table 4.1.

Table 4.1: Simulation Parameters for Uninformative Priors.

Parameter Value Units
Azimuth -90:1:90 degrees
Elevation 30 degrees

Carrier Frequency 300 MHz
Bandwidth 100 MHz

Frequency Bins 64 Bins
Noise Variance 0.01

Polynomial Order 5

4.2.1 Single Plate Shape.

The interval estimation is performed over a series of known plate shapes. The plate

shape has eight parameters: (X,Y,Z), (roll, pitch, yaw) and (height H, length L). The RCS

area is calculated as A = HL. At each simulation, two shape parameters are estimated

and the remaining are ‘given’ a-priori. This is equivalent to perfect knowledge of the other

‘nuisance’ parameters. Unless otherwise specified, the simulation parameters used for the

‘nuisance’ parameters are shown in Table 4.2.

4.2.1.1 Plate Position Estimation.

Figure 4.7 shows the result of estimating the position of two different plates. In

Figure 4.7(a), the plate’s true position is located at X = 5, Y = 5. The estimation of

(X, Y) shows a sharp spike at (5, 5) when performed over a 0.1 m interval. Nearly all the

probability mass is contained at the correct parameter values. Figure 4.7(b) is the same

simulation with the true position moved to (X, Y) = (5, 3). The estimator finds most of
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Table 4.2: Single Plate Nuisance Parameters.

Name Value Unit
X 5 meters
Y 6 meters
Z 0 meters

Length 2 meters
Height 6 meters
RCS L × H sq. meters
Roll 5 degrees
Pitch 20 degrees
Yaw 0 degrees

Polarization VV

the probability mass at the new parameter values. Figure 4.7 is used as a ‘sanity check’ to

ensure the interval estimator is working properly.
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Figure 4.7: Validating estimation of the X and Y position a single plate shape located at

position (a) [5,5], and (b) [5,3], over a 0.1 m interval.

Figure 4.8 shows a series of progressively finer interval estimates to demonstrate the

multi-zoom capabilities of the interval estimator. At first, a very wide area of the (X, Y)

parameter space (100 m) is evaluated using a coarse interval (5 m). A large probability mass

is located near (X, Y) = (5, 5). The interval is decreased, as are the bounds of parameter
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space. In each step only the area of parameter space around the largest peak becomes the

new bounds for the next finer interval. As the interval is increased, the fine structure of

parameter space is revealed.
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Figure 4.8: Estimation of the X and Y position a single plate shape located at position

X = 5, Y = 5 at intervals of (a) 5 m, (b) 1 m, (c) 0.1 m, and (d) 0.005m.

4.2.1.2 Plate Size Estimation.

This section tests the results of the estimator to determine size parameters (length and

height). Figure 4.9 shows the results of progressively finer interval estimates. Again, at

first a coarse interval (1 m) and a large parameter space (L,H) of 50 m is used at first. The
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probability mass is concentrated at one point. The bounds are centered around this point in

parameter space with a finer interval. The estimator consistently picks out the parameter.

Again, the fine structure is evident at the increased zoom.
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Figure 4.9: Estimation of the length and height parameters of a single plate shape of true

size L = 4,H = 2 at intervals of (a) 1m, (b)0.1m, and (c) 0.01m.

The labels of the parameters for ‘length’ and ‘height’ are somewhat arbitrary. The

definition of each is dependent on the exact pose in question. One estimate of ‘height’ is

another estimate’s ‘length’. If the pose is perfectly known (as it is in these 2-parameter

simulations) the labeling returned by the estimator matches that of the parameter set used

to generate the received signal. However, if the pose is given erroneously, the resulting
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length and height may be swapped as shown in Figure 4.10. In this simulation two given

values of roll are used: one with the true roll, and another where the test roll is 90◦ offset.

These simulations have all non-estimated parameters as ‘given’. Note that this simple

(albeit severe) error moves the estimated length and height in parameter space to their

corresponding opposites from L = 2,H = 6 to L = 6,H = 2.
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Figure 4.10: Pose effects on length and height parameters of single plate of size L = 2,

H = 6 at (a) True pose, and (b) 90◦ roll offset from True.

4.2.1.3 Plate Pose Estimation.

Figure 4.11 shows the results of successively finer intervals on estimation of the pose

parameters roll and pitch (estimating yaw is similar). Note that in Figure 4.11(a) the bounds

of parameter space are taken to be −180◦...180◦ as this is the most intuitive case. However

it is clear from the plot of the interval masses that there is ambiguity in the parameters.

This is due to the 180◦ ambiguity of the plate shape. A plate looks identical from the back

than the front. Therefore the domain of pose parameters is restricted to −90◦...90◦. Again

the fine structure is present at increased zoom.
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Figure 4.11: Estimation of roll and pitch parameters for a plate at roll=5, pitch=20 at

intervals of (a) 10◦, (b) 10◦, (c) 1◦, and (d) 1
4

◦
.

4.2.2 Single Sphere Shape.

The interval estimation is performed over a series of known sphere shapes. The

sphere shape has four parameters: (X,Y,Z) and (radius R). The RCS area is calculated

as A = R. At each simulation, two shape parameters are estimated and the remaining are

‘given’ a-priori. This is equivalent to perfect knowledge of the other ‘nuisance’ parameters.

Unless otherwise specified, the simulation parameters used for the ‘nuisance’ parameters

are shown in Table 4.3.
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Table 4.3: Single Sphere Nuisance Parameters.

Name Value Unit
X 5 meters
Y 6 meters
Z 0 meters

Radius 1.5 meters
RCS R sq. meters

Polarization VV

4.2.2.1 Sphere Position Estimation.

Figure 4.12 shows a series of progressively finer interval estimates to demonstrate the

multi-zoom capabilities of the interval estimator. At first, a very wide area of the (X, Y)

parameter space (100 m) is evaluated using a coarse interval (5 m) however the numerical

precision is insufficient and no probability masses are found in the entire parameter space.

The interval is decreased to 1 m with the same 100 m parameter space and a large

probability mass is located near (X, Y) = (5, 6). The interval is decreased, as are the bounds

of parameter space. In each step only the area of parameter space around the largest peak

becomes the new bounds for the next finer interval. As the interval is increased, the fine

structure of parameter space is revealed.
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Figure 4.12: Estimation of the X and Y position of a single sphere shape located at position

X = 5, Y = 6 at intervals of size (a) 5 m, (b) 1 m, (c) 0.1 m, and (d) 0.005m.

4.2.2.2 Sphere Size Estimation.

This section tests the results of the estimator to determine size parameter (radius).

Figure 4.13 shows the results of progressively finer interval estimates. Again, a coarse

interval (0.5 m) and a large parameter space R of (50 m) is used at first. The probability

mass is concentrated at one point. The bounds are centered around this point in parameter

space with a finer interval. A minimum interval of 0.5 m is required before probability mass

is detected; wider intervals do not detect any parameters while smaller intervals consistently

pick out the parameter. Again, the fine structure is evident at the increased zoom.
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Figure 4.13: Estimation of the radius parameter of a single sphere shape of true size R = 1.5

at intervals of (a) 0.5m, (b)0.05m, and (c) 0.001m.

4.2.2.3 Sphere Pose Estimation.

The sphere shape phase history has no pose parameters because the phase history is

spherically symmetric.

4.2.3 Single Dihedral Shape.

The interval estimation is performed over a series of known dihedral shapes. The

dihedral shape has eight parameters: (X,Y,Z), (roll, pitch, yaw) and (height, length). The

RCS area is calculated as A = 2HL. At each simulation, two shape parameters are

estimated and the remaining are ‘given’ a-priori. This is equivalent to perfect knowledge
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of the other ‘nuisance’ parameters. Unless otherwise specified, the simulation parameters

used for the ‘nuisance’ parameters are shown in Table 4.4.

Table 4.4: Single Dihedral Nuisance Parameters.

Name Value Unit
X 5 meters
Y 6 meters
Z 0 meters

Length 2 meters
Height 6 meters
RCS 2 × L × H sq. meters
Roll 0 degrees
Pitch 30 degrees
Yaw 0 degrees

Polarization VV

4.2.3.1 Dihedral Position Estimation.

Figure 4.14 shows a series of progressively finer interval estimates of the position

space. At first, a very wide area of the (X, Y) parameter space (100 m) is evaluated using

a coarse interval (5 m). This resolution is insufficient since the estimator finds no masses

anywhere, so the resolution is increased to 1 m. A large probability mass is located near

(X, Y) = (5, 6). The interval is decreased as are the bounds of parameter space. In each

step, only the area of parameter space around the largest peak becomes the new bounds for

the next finer interval. As the interval is increased, the fine structure of parameter space is

revealed.
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Figure 4.14: Estimation of the X and Y position a single dihedral shape located at position

X = 5, Y = 6 at intervals of size (a) 5 m, (b) 1 m, (c) 0.1 m, and (d) 0.01m.

4.2.3.2 Dihedral Size Estimation.

This section tests the results of the estimator to determine size parameters (length and

height). Figure 4.15 shows the results of progressively finer interval estimates. Again at

first a coarse interval (1 m) and a large parameter space (L,H) of 50 m is used at first. The

probability mass is concentrated at one point. The bounds are centered around this point in

parameter space with a finer interval. The estimator consistently picks out the parameter.

Again, the fine structure is evident at the increased zoom.
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Figure 4.15: Estimation of the length and height parameters of a single dihedral shape of

true size L = 2,H = 6 at intervals of size (a) 1m, (b)0.1m, and (c) 0.01m.

4.2.3.3 Dihedral Pose Estimation.

Figure 4.16 shows the results of successively finer intervals on estimation of the pose

parameters roll and pitch (estimating yaw is similar). Again the fine structure is present at

increased zoom. Note that the fine structure of this configuration is not evident until very

small intervals as shown in Figure 4.16 (c). There are many local maxima around the true

parameter values.
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Figure 4.16: Estimation of roll and pitch parameters for a dihedral at roll=0, pitch=30 at

intervals of size (a) 10◦, (b) 1◦, and (c) 0.01◦.

4.2.4 Single Trihedral Shape.

The interval estimation is performed over a series of known trihedral shapes. The

trihedral shape has seven parameters: (X,Y,Z), (roll, pitch, yaw) and (height). The RCS

area is calculated as A = 2
√

3H2. At each simulation two shape parameters are estimated

and the remaining are ‘given’ a-priori. This is equivalent to perfect knowledge of the other

‘nuisance’ parameters. Unless otherwise specified, the simulation parameters used for the

‘nuisance’ parameters are shown in Table 4.5.
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Table 4.5: Single Trihedral Nuisance Parameters.

Name Value Unit
X 5 meters
Y 6 meters
Z 0 meters

Height 6 meters
RCS 2

√
3H2 sq. meters

Roll 0 degrees
Pitch 30 degrees
Yaw 0 degrees

Polarization VV

4.2.4.1 Trihedral Position Estimation.

Figure 4.17 shows a series of progressively finer interval estimates of the position

space. At first a very wide area of the (X, Y) parameter space (100 m) is evaluated using

a coarse interval (5 m). This resolution is insufficient since the estimator finds no masses

anywhere, so the resolution is increased to 1 m. A large probability mass is located near

(X, Y) = (5, 6). The interval is decreased as are the bounds of parameter space. In each

step only the area of parameter space around the largest peak becomes the new bounds for

the next finer interval. As the interval is increased, the fine structure of parameter space is

revealed to be a highly concentrated probability mass at the true location.
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Figure 4.17: Estimation of the X and Y position a single trihedral shape located at position

X = 5, Y = 6 at intervals of size (a) 5 m, (b) 1 m, (c) 0.1 m, and (d) 0.01m.

4.2.4.2 Trihedral Size Estimation.

This section tests the results of the estimator to determine size parameter (height).

Figure 4.18 shows the results of progressively finer interval estimates. Again, a coarse

interval (1 m) and a large parameter space H of 50 m are used initially. The probability

mass is concentrated at one point. The bounds are centered around this point in parameter

space with a finer interval. The estimator consistently picks out the parameter. Again, the

fine structure is evident at the increased zoom.
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Figure 4.18: Estimation of the height parameter of a single trihedral shape of true size

H = 6 at intervals of size (a) 1m, (b) 0.1m, and (c) 0.01m.

4.2.4.3 Trihedral Pose Estimation.

Figure 4.19 shows the results of successively finer intervals on estimation of the pose

parameters roll and pitch (estimating yaw is similar). Again the fine structure is present at

increased zoom. Note that the fine structure of this configuration is not evident until very

small intervals as shown in Figure 4.19 (c). There are many local maxima around the true

parameter values.
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Figure 4.19: Estimation of roll and pitch parameters for a trihedral shape at roll=0,

pitch=30 at intervals of size (a) 10◦, (b) 1◦, and (c) 0.01◦.

4.2.5 Single Top-hat Shape.

The interval estimation is performed over a series of known top-hat shapes. The top-

hat shape has eight parameters: (X,Y,Z), (roll, pitch, yaw) and (height, radius). The RCS

area is calculated as A =
√

8R/
√

2 × H. At each simulation, two shape parameters are

estimated and the remaining are ‘given’ a-priori. This is equivalent to perfect knowledge

of the other ‘nuisance’ parameters. Unless otherwise specified, the simulation parameters

used for the ‘nuisance’ parameters are shown in Table 4.6.
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Table 4.6: Single Top-hat Nuisance Parameters.

Name Value Unit
X 5 meters
Y 6 meters
Z 0 meters

Radius 2 meters
Height 6 meters

RCS
√

8R/
√

2 × H sq. meters
Roll 0 degrees
Pitch 30 degrees
Yaw 0 degrees

Polarization VV

4.2.5.1 Top-hat Position Estimation.

Figure 4.20 shows a series of progressively finer interval estimates of the position

space. At first, a very wide area of the (X, Y) parameter space (100 m) is evaluated using

a coarse interval (5 m). This resolution is insufficient since the estimator finds no masses

anywhere, so the resolution is increased to 1 m. A large probability mass is located near

(X, Y) = (5, 6). The interval is decreased as are the bounds of parameter space. In each

step, only the area of parameter space around the largest peak becomes the new bounds for

the next finer interval. As the interval is increased, the fine structure of parameter space is

revealed to be a highly concentrated probability mass at the true location.
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Figure 4.20: Estimation of the X and Y position a single top-hat shape located at position

X = 5, Y = 6 over intervals of size (a) 5 m, (b) 1 m, (c) 0.1 m, and (d) 0.01 m.

4.2.5.2 Top-hat Size Estimation.

This section tests the results of the estimator to determine size parameters (radius and

height). Figure 4.21 shows the results of progressively finer interval estimates. Again,

at first a coarse interval (1 m) and a large parameter space (R,H) of 50 m is used. The

probability mass is concentrated at one point. The bounds are centered around this point in

parameter space with a finer interval. The estimator consistently picks out the parameter.

Again, the fine structure is evident at the increased zoom.
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Figure 4.21: Estimation of the radius and height parameters of a single top-hat shape of

true size R = 2, H = 6 at intervals of size (a) 1m, (b) 0.1m, and (c) 0.01m.

4.2.5.3 Top-hat Pose Estimation.

Figure 4.22 shows the results of successively finer intervals on estimation of the pose

parameters roll and pitch (estimating yaw is similar). Again the fine structure is present at

increased zoom. Note that the fine structure of this configuration is not evident until very

small intervals as shown in Figure 4.22 (c). The probability mass is centered in an area of

±0.03◦, but the estimator consistently finds a peak even at the low resolution of 10◦.
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Figure 4.22: Estimation of roll and pitch parameters for a top-hat at roll=0, pitch=30 at

intervals of size (a) 10◦, (b) 1◦, and (c) 0.01◦.

4.2.6 Single Cylinder Shape.

The interval estimation is performed over a series of known cylinder shapes. The

cylinder shape has eight parameters: (X,Y,Z), (roll, pitch, yaw) and (length, radius). The

RCS area is calculated as A = L
√

R. At each simulation, two shape parameters are

estimated and the remaining are ‘given’ a-priori. This is equivalent to perfect knowledge

of the other ‘nuisance’ parameters. Unless otherwise specified, the simulation parameters

used for the ‘nuisance’ parameters are shown in Table 4.7.
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Table 4.7: Single Cylinder Nuisance Parameters.

Name Value Unit
X 5 meters
Y 6 meters
Z 0 meters

Radius 2 meters
Height 6 meters
RCS L

√
R sq. meters

Roll 5 degrees
Pitch 30 degrees
Yaw 0 degrees

Polarization VV

4.2.6.1 Cylinder Position Estimation.

Figure 4.23 shows a series of progressively finer interval estimates of the position

space. At first a very wide area of the (X, Y) parameter space (100 m) is evaluated using

a coarse interval (5 m). This resolution is insufficient since the estimator finds no masses

anywhere, so the resolution is increased to 1 m. A large probability mass is located near

(X, Y) = (5, 6). The interval is decreased as are the bounds of parameter space. In each

step only the area of parameter space around the largest peak becomes the new bounds for

the next finer interval. As the interval is increased, the fine structure of parameter space is

revealed.
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Figure 4.23: Estimation of the X and Y position a single cylinder shape located at position

X = 5, Y = 6 at intervals of size (a) 5 m, (b) 1 m, (c) 0.1 m, and (d) 0.01m.

4.2.6.2 Cylinder Size Estimation.

This section tests the results of the estimator to determine size parameters (radius and

length). Figure 4.24 shows the results of progressively finer interval estimates. Again at

first a coarse interval (1 m) and a large parameter space (R,H) of 50 m is used at first. The

probability mass is concentrated at one point. The bounds are centered around this point in

parameter space with a finer interval. The estimator consistently picks out the parameter.

Again, the fine structure is evident at the increased zoom.
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Figure 4.24: Estimation of the radius and height parameters of a single cylinder shape of

true size R = 2,L = 2 at intervals of size (a) 1m, (b)0.1m, and (c) 0.01m.

4.2.6.3 Cylinder Pose Estimation.

Figure 4.25 shows the results of successively finer intervals on estimation of the pose

parameters roll and pitch (estimating yaw is similar). Again, the fine structure is present

at increased zoom. This shape suffers from the same periodicity in pose parameter that is

seen in the plate shape. Note that the fine structure of this configuration is not evident until

very small intervals as shown in Figure 4.25 (c). The probability mass is centered in an

area of ±3◦, but the estimator consistently finds a peak even at the low resolution of 10◦.

In Figure 4.25(c) the fine structure is much more complicated than originally indicated at

77



low resolution. The peak of the estimate at 0.1◦ is slightly off. It is believed that there are

actually multiple peaks of exactly the same mass and the estimator picked the first.
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Figure 4.25: Estimation of roll and pitch parameters for a cylinder at roll=5, pitch=30 at

intervals of size (a) 10◦, (b) 1◦, and (c) 0.1◦.

4.3 Two Shape Case

All target scenes of interest have multiple shapes of various parameters. From the

parameter estimation case, the multiple shapes simply increase the dimensionality of the

parameter spaceΘ. For N plate shapes in the scene, each having 8 parameters the parameter
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space is 8N dimensions. Figure 4.26 shows the interval estimates for a phase history that is

the sum of two plates. In this case the other 14 parameters are ‘given’, and identical except

that shape 1 has Y1 = 5 and shape 2 has Y2 = 3. Note that the familiar single mass peak is

seen at coarse intervals with its fine structure visible as interval is decreased.
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Figure 4.26: Estimation of X position of two plates (different Y) located at X1 = 5, X2 = 5.5

at intervals of size (a) 0.1 m, and (b) at 0.01m.

Figure 4.27 shows when the two shapes have all ‘given’ parameters identical. In this

case there is no distinction between the labeling of shapes 1 and 2. With no given parameter

to establish labeling, there appear two mass peaks for the two permutations of X location.

This is an example where the assumption of the statistical independence of parameters is

broken.

To study the effects of the estimator for two dissimilar shapes, we performed a series

of simulations with parameters similar to that of the two plate case but for a phase history

containing both a plate and a sphere. In Figure 4.28 plot (a), the plate is located at

position (6, 5, 0) with L = 2,H = 6. The sphere is located at (5.5, 5, 0) with R = 1.5.

In Figure 4.28(b) The scene is for a plate at (6, 5, 0) with L = 6,H = 2 and a dihedral at
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Figure 4.27: Estimation of X Position of two plates (otherwise identical) located at X1 = 6,

X2 = 5.5 over intervals of size (a) 0.1 m, and (b) 0.02m.

(5.5, 5, 0) with L = 6,H = 2. The two shapes are clearly present and their coordinates are

estimated accurately. Note that the change in the second shape slightly changes the width

of the credible interval (viewed as the width of the ‘bump’), while the credible interval of

the plate axis is the same.
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Figure 4.28: X position estimates of two different shapes present together: (a) plate and

sphere, and (b) plate and dihedral.
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4.4 Incorrect Shape Type

This section discusses the effects of using the wrong shape type in an estimation

problem. The wrong shape scenario could happen if the shape type is not known, and

the user tries to estimate the parameters of each shape type based on a given observation

y. A phase history of each shape type is subjected to the estimators of the other shape

type. For these experiments, we limited the estimation only to the size parameters (length,

height, and radius as appropriate).

In most cases, incorrect shape assumption creates a situation where the likelihood

function p(y |Θ) is extremely small. In the cases studied during this research, the likelihood

function is below the numerical limits of the computing platform. Table 4.8 summarizes

the results of each permutation. For some combinations, the estimator is able to create a

set of probability masses. In those cases we have generated figures of the estimator output

for study.

Table 4.8: Results of incorrect shape type assumption. “Low” indicates uniformly low

probability of parameter over the whole space.

True Shape
Plate Dihedral Trihedral Sphere Top-hat Cylinder

A
ss

um
ed

Plate — Low Low Low Low Low
Dihedral L = 0,H = 0 — Low Low Low Low
Trihedral Low Low — Low Low Low
Sphere Low R = 0 R = 0 — Low R=0
Top-hat H = 0,R = any Low Low Low — Low
Cylinder R = 0 Low Low Low Low —

Figure 4.29 shows the results of attempting to estimate the radius parameter assuming

the phase history is that of a sphere. In Figure 4.29(a) the true shape is a 2× 6 dihedral and

the estimator sees this as a zero-radius sphere. In Figure 4.29(b) the true shape is a 2 × 6

plate and the estimator sees this again as as a zero-radius sphere. In Figure 4.29(c) the true

shape is a R = 1, L = 2 cylinder.
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Figure 4.29: Estimating a sphere with the wrong shape when the true shape is (a) a dihedral,

(b) a plate, and (c) a cylinder.

Figure 4.30 shows the results of attempting to estimate the height and length

parameters assuming the phase history is that of a dihedral. When the plate phase history

is applied to this estimator, the result is a line of probability masses along the H = 0 and

L = 0 ordinates.

Figure 4.31 shows the results of attempting to estimate the height and radius

parameters assuming the phase history is that of a top-hat when the true phase history

is a plate. When the plate phase history is applied to this estimator the result is a line of

probability masses along the H = 0 ordinate only.
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Figure 4.30: Estimating a dihedral with the wrong shape when the true shape is a plate.
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Figure 4.31: Estimating a top-hat with the wrong shape when the true shape is a plate.

Figure 4.32 shows the results of attempting to estimate the length and radius

parameters assuming the phase history is that of a cylinder when the true phase history
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is a plate. When the phase history of a plate is applied to this estimator the result is a line

of probability masses along the R = 0 ordinate only.
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Figure 4.32: Estimating a cylinder with the wrong shape when the true shape is a plate.

The case of incorrect shape assumption often yield in one of two results: a uniformly

“low” probability mass, or a distribution of masses along a zero-size axis. Measuring low

probability mass is easy for practical implementations to check for, and judicious use of the

prior distribution p(Θ) can remove degenerate cases like those seen in Figures 4.31-4.32.

4.5 Computation Time

The plots contained in this chapter are generated using 20 × 20 probability mass

intervals. For these 400 masses, the parameters of Table 4.1 require F = 64 frequency

bins, K = 181 azimuth/elevation points and N = 5 order polynomial. For the plate, there

are D = 8 parameter dimensions. Using the results of Section 2.6 each sample requires 9.05

billion calculations of the magnitude and phase factors in the Jackson model to calculate
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each probability mass 2. Prior to GPU implementation this calculation took about 13 hours

on a quad-core processor. After implementing the Jackson models and associated code into

the CUDA GPU the computations were reduced to 12 minutes.

In the figures generated for this chapter, we constrained the problem to only D = 2

parameters, resulting in 579,200 calculations per mass, or 116 million calculations for the

figure. An early baseline of the D = 2 estimation of length and height of a plate prior to

CUDA implementation took approximately 1.3 hours per figure. Using the CUDA GPU

implementation of the Jackson models yields a computation time of about 5-10 seconds per

figure.

4.6 Credible Regions

Section 3.4.1 describes the calculation of measures of confidence through the use of

the credible set CP. In this section, we demonstrate the results of a calculation of credible

set for the uninformative prior. Figure 4.33 shows the credible set CP for the two-plate

case of Section 4.3. The phase history is that used to generate Figure 4.26, where there are

two plates in the target scene with different X and Y locations (pose and size parameters

are the same for each shape). As in Section 4.3, the Y locations are ‘given’ as Y1 = 3 and

Y2 = 5; only the X positions X1 and X2 are estimated. Figure 4.33(a) shows the probability

mass at an interval of 0.01 m for two plates. Figure 4.33(b) shows the results of simple

thresholding; all intervals with mass less than γ = 0.001 are excluded from the set. In

Figure 4.33(c) we see the results of applying the ordering operator O[P] and the resulting

sequence of probability masses. Finally, Figure 4.33(d) shows the result of applying only

the M-largest masses such that the parameter α ≥ 0.95.

In the above figures, Figure 4.33(b) and (d) appear very similar, however different

methods are used to determine if a particular interval is included in the credible set or

2These reference calculations of the entire magnitude and phase factors given in Chapter 2. Each
calculation of S(k) requires many thousand calculations by itself.
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Figure 4.33: Credible set for two plates at X1 = 5, X2 = 5.5 (with Y1 = 3, Y2 = 5). (a)

Probability mass for 0.01 m interval, (b) thresholded at γ = 0.001, (c) masses ordered

highest to lowest, and (d) Upper credible interval C+P, α=0.95.

not. In Figure 4.33(b), the user must specify the threshold γ. For this plot, γ = 0.001 is

defined by visual inspection of the probability masses in Figure 4.33(a). The value of γ

must be recalculated whenever the interval size changes. However, in Figure 4.33(d) the

user need only specify the parameter α. The number M of ordered masses that sum to α is

automatically recalculated based on the probability mass set P that is given.
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Figure 4.34: Credible set for two plates at X1 = 5, X2 = 5.5 (with Y1 = 3, Y2 = 5). (a)

Probability mass for 0.0025 m interval, (b) thresholded at γ = 0.001, (c) masses ordered

highest to lowest, and (d) upper credible interval C+P, α=0.95.

To display the effects of constant mass calculation versus simple thresholding, a new

estimate of the probability mass with smaller intervals is shown in Figure 4.34. The interval

is one-fourth the size of Figure 4.33. With the increased fine structure, we expect the

credible region size not to change appreciably (although increased detail is expected).

As shown in plot (a) of both Figure 4.33 and Figure 4.34, the probability mass set has

more members at finer detail, and the mass values are smaller (being integrals of the same
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function over a smaller region). Plot (b) of each shows the effect of keeping the same

threshold γ = 0.001. The bounds of the region actually decrease because γ has remained

the same. In contrast, plot (d) of each figure shows the region bounds stay largely the

same despite the fact that α remained fixed at 0.95, indicating the credible region is fairly

consistent across these two interval sizes.
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V. Discussion and Future Work

This research has focused on the detection, estimation and confidence determination

of the Jackson canonical shapes for synthetic aperture radar (SAR).

Over the course of this thesis, we presented the background on the Jackson phase

history models. We discussed how these models are used to the problem of this research:

the detection of canonical shapes in phase history. We have developed an analysis of

the posterior density space by means of statistical methods and numerical techniques.

The results are promising, and in simulations we were able to find estimates of the true

parameters in most cases, except where numerical precision became a problem.

The estimation techniques we have developed are applicable to any Bayesian

estimation problem. The interval estimation is particularly useful in situations where a

parameter estimate is needed only to a prescribed precision, such as plus-or-minus a certain

tolerance. The multi-zoom capability allows the user to terminate the estimate when the

desired precision is achieved. It also allows a ‘quick look’ at posterior space as well as

detailed views. The phase history model we used was that of Jackson [1], however the

probability mass technique can be used for other models, such as the traditional point

scatterer model, or the attributed scattering model of [30]. This technique may be used

beyond SAR problems and into general engineering and scientific use.

5.1 Bayesian Methods

It is believed that improvements to shape detection can be made through the use

of prior information, and this requires the use of Bayesian methods. In Section 3.2 we

developed the bounds on the prior distributions based on the fact that the SAR phase history

is sampled in both frequency and space. This leads to periodicity in the parameter space

(and alias zones in SAR imaging) which must be avoided.
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5.2 Numerical Integration

The detection of canonical shapes requires the use of a wide variety of mathematical

techniques from statistics and numerical analysis. We reviewed techniques for compu-

tational integration of arbitrary functions in order to show their applicability to the SAR

research community.

In Section 2.3 we explored the concept of the quadrature, whereby the integral of a

function may be approximated by the sum of a set of weighted sample points (abscissas).

We showed how the error in this approximation is related to how well the function can

be approximated by a polynomial of order N. Further, the Gaussian quadrature defines

the abscissas in terms of orthogonal polynomials, and this additional constraint leads to an

increased accuracy of the integral approximation without the need for additional sample

points.

For the purposes of this research, the Legendre polynomials were used to create the

quadrature rules. These rules have finite bounds and the appropriate weight function for

the integrals commonly encountered. The Gauss-Legendre quadrature was expanded from

the simple 1-dimensional case to D-dimensional integrals with arbitrary bounds (by use of

the affine transformation).

5.3 Probability Mass

The numerical integration techniques (particularly the Gauss-Legendre quadrature)

can be used to calculate the denominator in Bayes’ Rule. However, over the course of

this research, we found a new use for this integral: the conversion of the posterior density

p(Θ | y) into a discrete set of probability masses P.

We have shown that the probability mass is much more than just converting a

continuous distribution into a discrete one. By defining the probability mass as the integral

over a finite interval of the posterior density, areas of high density value (i.e. peaks in the

posterior) are preserved regardless of the ‘size’ of the interval. Since the Bayesian detection
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and estimation process often looks for peaks in posterior space, this peak-preserving

property is highly desirable.

We developed an algorithm whereby the posterior space can be partitioned into

intervals (wide at first), and areas where a peak occurs are quickly found. These areas are

then sub-partitioned into smaller intervals and the process is repeated. The result is a mult-

zoom capability so that at any iteration only areas of ‘interesting’ probability information

are examined. The results of Chapter 4 show how this mult-zoom capability can be used to

quickly examine the fine structure of the posterior space.

The probability mass analysis at a given interval is also more than just a means of

finding peaks. The results of Section 3.3.3 provide a formal statement and proof that

the probability mass (the integral of posterior density over finite bounds) is a measure

of the cost of an estimate. The probability mass transforms parameter estimation from a

process of finding a best parameter estimate Θ̂ to a process of finding the nearest range

of parameters. The cost function forces all parameter estimates within an interval to be

equally correct. This new cost, and an associated new distance metric, creates a new type of

maximum a posteriori (MAP) estimate that is tailored to use in a set of discrete probability

masses.

5.4 Credible Regions

A technique for presenting a measure of confidence, the credible region, was adapted

for the use with the probability mass. In Section 2.5, we presented the Gill definition of

the credible region. This is a region where we can be assured that the ‘true’ parameter Θ

has some probability α of being inside. The probability mass is a natural fit with credible

region since both are statements about multidimensional integrals of the posterior density.

We presented two different approaches to defining the credible region: by fixed

thresholding and by ranking the masses in order. Fixed thresholding is a natural extension

of techniques based on the posterior density. In this approach, only those masses whose
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value exceeds the threshold γ are included in the credible region. The results of Section 4.6

show this threshold must change when the interval size changes, and the interval size is

expected to change frequently in the multi-zoom parameter estimation.

An alternative approach, by ranking the probability masses, requires only the

parameter α; it does not require a new threshold after each change in interval size. Instead,

the masses (at that interval size) are ranked in order from largest to smallest, and the top M

masses that add up to α are included in the credible set.

5.5 Implementation on GPU Hardware

For this research, we often encounter integrals of D parameter dimensions. The

Gaussian quadrature of order N requires computation of the function at N D points. For F

frequency bins and K flight path samples a single quadrature requires FKN D calculations

of the Jackson phase history. This can be several billion calculations resulting in a single

probability mass. The multi-zoom algorithm of Section 3.3.4 used in the creation of the

results in Chapter 4 uses 20-by-20 grids of probability mass. Almost a trillion calculations

must be performed to produce the plots in Chapter 4.

The Graphics Processor Unit (GPU) provides low-cost hardware to perform such

calculations. In the GPU, there exist several hundred (or thousand) processors that execute

the same code with different arguments. As a result, a single piece of C++ code is

dispatched to all processors and each computes a portion (perhaps only one sample) of

the phase history.

The CUDA framework is a driver for Windows and Linux that allows the capabilities

of the GPU to be used by C++ programmers. Additionally MATLAB has support to call

these code blocks (called CUDA Kernels) from within existing MATLAB codes. Over the

course of this research, the Jackson phase history models were ported to CUDA codes.

However the high-level sequencing and plotting remained as MATLAB code for ease of

use.
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In this research, algorithms that took over one hour in MATLAB using for loops and

vector calculation were reduced to about 10 seconds. As a result the seemingly daunting

calculations required in multi-zoom estimation and marginalization became practical to

implement.

5.6 Future Work

This research has focused on new analytical, statistical and numerical techniques

to estimate the parameters of shapes in a SAR target scene. We were successful at

demonstrating the techniques in a controlled environment. However, there are many areas

for future research.

5.6.1 Model Order Determination.

The multi-zoom estimation technique described in Section 3.3.4 requires knowledge

of the total number of shapes in the scene. Without this information the algorithm will

attempt to incorrectly model the difference between an estimated parameter instance and

the observed signal as Gaussian noise. In either under-fit (too few estimated shapes) or

over-fit (too many shapes) scenarios, the error is unlikely to be Gaussian. Particularly, it is

unlikely to be independent, identically distributed (IID) and so all estimates of probability

mass are in error. Therefore, an accurate model order is crucial. The results of [24] produce

a technique for counting shapes based on the Jackson phase history that may be applicable.

5.6.2 Noise Sensitivity.

The posterior density is calculated assuming knowledge of the observed signal noise

variance σ2. Although this may not affect the MAP estimate to a great deal, changes in

variance will scale the bounds of the credible region. Therefore, an accurate estimate of

the variance is necessary for use of the credible region. Further research could focus on

techniques for calculating the variance, and characterizing the sensitivity of the credible

region to uncertainty in variance.
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5.6.3 Developing Intuition about Posterior Space.

The graphs of probability mass shown in Chapter 4 are (we believe) the first attempt

at truly exploring the posterior space (whether as a density or a series of masses) of the

Jackson canonical shape models. This type of capability can allow further research into

building models of the different coupling between parameters. Interesting areas for such

exploration are the roll-pitch-yaw ambiguities, whereby combinations of roll, pitch, and

yaw can produce the same phase history, and coupling between symmetric parameters such

as plate height and length. Research into these areas can help build intuition about the

limitations of the canonical shape framework and to provide ways of overcoming them. A

real-time Graphical User Interface (GUI) that shows posterior space while the user adjusts

parameters may be of particular value.

5.6.4 Improved Numerical Precision.

The results of this research were very encouraging and the plots of probability mass

correspond to our intuitive understanding. In most cases, we expect to see a single peak

in posterior space except where ambiguities such as the 2-plate case of Section 4.3 exist.

However, in a large number of cases, the actual probability is below the numerical precision

of the computing platform. This is particularly problematic when Gaussian probabilities

are used, since the exponential for a long signal (many frequency and azimuth/elevation

samples) can be very large. Both MATLAB and CUDA use the IEEE standard double-

precision floating point number format, but in the course of this research there were

numerous examples of needs to calculate factors such as exp(−108). Future research may

focus on improving the technique to use the logarithm of the probability in order to preserve

numeric results.

5.6.5 ATR Framework.

Finally, an extremely important area of future research is the development of a type of

ATR framework that uses the posterior distribution directly (in the form of probability
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masses). The goal of this research is to develop techniques that detect the canonical

shapes, so that these detected shapes may be re-assembled into complex objects like tanks,

buildings, and structures. However most ATR techniques encountered over the course of

this research focus on matching the received phase history to that of entire complex objects

at once. Future research could focus on the use of the posterior masses to develop new

prior distributions, and the problem of re-assembly of the canonical shapes into compound

objects. The kernel-based learning methods of [31] could possibly be adapted to determine

trends in the distribution of parameters that would lead to accurate prior distributions.
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